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We aim to construct a Galactic-scale detector comprised of an array of pulsars

distributed across the sky in an effort to detect low-frequency (nanohertz) grav-

itational waves. Even without a detection, observations of pulsar timing arrays

have allowed us to begin to place impactful astrophysical constraints on dynam-

ical processes occurring during galaxy mergers. Understanding the detector is

necessary for improving our sensitivity to gravitational waves and making a detec-

tion. Therefore, our goal is to characterize the entire propagation path through

the pulsar timing array detector. To do so, we must understand: what intrinsic

noise processes occur at the pulsar, what effects the interstellar medium has on

pulsed radio emission, and what errors we introduce when measuring the incident

electromagnetic radiation at our observatories.

In this work, we observed of one of the most spin-stable objects known for 24

hours to understand the fundamental limits of precision pulsar timing. We investi-

gated the effect of non-simultaneous, multi-frequency sampling of pulsar dispersion

measures on timing and analyzed the cause of deterministic and stochastic tempo-

ral variations seen in dispersion measure time series. We analyzed errors in pulse

arrival times and determined the white noise budget for pulsars on the timescale

of a single observation. Finally, we measured the excess noise beyond the white

noise model in pulsar timing residuals and incorporated our results into a global

model over all pulsar populations to improve excess noise scaling relations.
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CHAPTER 1

INTRODUCTION

The discovery of pulsars has provided us with precision tools for investigating

Galactic dynamics, as probes of core collapse supernovae, as instruments to explore

ultra-dense matter equations of state, and as tests of gravity. In this chapter, we

will provide an introduction to gravitational waves (GWs), pulsars, pulsar timing,

and GW experiments with pulsar timing arrays (PTAs).

1.1 The Gravitational Wave Universe

Colloquially known as “ripples” in spacetime, GWs are propagating metric per-

turbations that cause subtle changes in the distances between objects. Obser-

vations of GWs offer a new window to viewing the Universe beyond traditional

electromagnetic-based astronomy. Just as we build many different kinds of tele-

scopes to observe different frequencies of light across the electromagnetic spec-

trum, different classes of GW observatories spanning the separate GW spectrum

frequency bands will enable us to probe particular sources and underlying physics.

The primary sources of GWs are compact objects, such as black holes, typi-

cally in binaries. PTAs observe in the low-frequency GW band and can be used

to observe supermassive black hole binaries at the very centers of distant merging

galaxies (Detweiler 1979; Hellings & Downs 1983; Romani 1989; Foster & Backer

1990), observations that allow us to understand dynamical processes during merg-

ers that are not possible with electromagnetic telescopes. Other possible sources

observable by PTAs include cosmic strings (Starobinskǐi 1979; Sanidas et al. 2013)

and primordial GWs from the inflationary epoch (Grishchuk 2005).
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1.2 A Primer on Gravitational Waves

Just over a century ago, Einstein (1915b) developed his landmark theory of gen-

eral relativity (GR), which describes the effect that mass and energy have on both

space and time. Gravity is explained by the geometric curvature of spacetime, with

objects following curved paths rather than experiencing an instantaneous central

force as described by Newtonian theory. GR has yielded explanations for observed

phenomena in disagreement with the Newtonian framework. Early in its devel-

opment, it explained the anomalous advance of Mercury’s perihelion precession

of Mercury beyond the predictions from Newtonian mechanics (Le Verrier 1859;

Einstein 1916). Apparent shifts in the position of a star due to the bending of light

around the Sun observed by Eddington during the 1919 solar eclipse quickly veri-

fied Einstein’s predictions and cemented the place of the theory in history (Dyson

et al. 1920; Einstein 1915a).

The mathematics of GR are represented with the Einstein field equations, a set

of 16 (10 unique) differential equations succinctly represented as

Gµν ≡ Rµν −
1

2
Rgµν =

8πG

c4
Tµν , (1.1)

where the left hand side describes the geometric curvature of spacetime and the

right hand side describes the local source energy and momentum distribution mul-

tiplied by fundamental constants. Here, Gµν is the Einstein tensor, containing

terms that include the metric tensor gµν which determines the spacetime interval

between two points, and functions of derivatives of the metric in both the Ricci

tensor Rµν and the Ricci scalar curvature R. The stress-energy tensor Tµν contains

terms for the density and flux of both energy and momentum. In normal spacetime,

all tensors in Eq. 1.1 are symmetric 4×4 tensors, e.g., the indices µ, ν ∈ {0, 1, 2, 3}

are four arbitrary coordinates, one in time and three in space.

2



In the linearized gravity regime, we can write the Einstein field equations as

�h̄µν = −16πG

c4
Tµν , (1.2)

where �h̄µν represents the GW propagation with the usual wave operator. For

more details, see the appendix to this chapter. We can use Eq. 1.2 to derive useful

scaling relations for two orbiting point masses emitting GWs. Given two masses M

orbiting at a separation R with a characteristic timescale (period) T and observed

at a distance D, it can be shown (by dimensional analysis or again see the appendix

for this derivation) that the GW strain is approximately

h ∼ G

Dc4

MR2

T 2
∼ G

Dc4
MR2f 2 ∼ G

4π2Dc4
MR2Ω2, (1.3)

where f is the frequency of emission (Ω is the angular orbital frequency). In the

Newtonian limit, we use the Keplerian orbital frequency to relate Ω2 ∼ GM/R3

and thus we arrive at

h ∼ (GM)2

4π2c4DR

≈ 6× 10−16

(
M

108M�

)2(
Mpc

D

)(mpc

R

)
, (1.4)

where the mpc separation is roughly when the energy loss of the system is domi-

nated by GW emission. The GW frequency is given by

f ∼ 1

2π

(
GM

R3

)1/2

≈ 100 nHz

(
M

108M�

)1/2 (mpc

R

)3/2

. (1.5)

Fiducial values are for expected supermassive black hole binaries in merging galax-

ies in local galaxy clusters that are in the final stages of the GW-dominated inspiral.

We can relate the GW strain to the timing precision required from a pulsar.

Relating the GW to the fractional change in distance (h ∼ ∆L/L), for a given h,
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we need to keep track of the position of a pulsar to well within ∆L. We thus have

∆L ∼ hL ∼ hcT

≈ 9.5 m

(
h

10−16

)(
T

10 yr

)
, (1.6)

where L ∼ cT is the length from the light/GW travel time. The timing precision

is then trivially found to be

∆t ∼ ∆L

c
∼ hT

≈ 32 ns

(
h

10−16

)(
T

10 yr

)
. (1.7)

Therefore, we require timing precision at the nanosecond level from pulsars in order

to measure the effects of passing GWs.

1.3 The Discovery of Pulsars

Baade & Zwicky (1934) first described the theoretical possibility of a neutron

star, a small, dense object composed primarily of neutrons originating as a stellar

remnant from a supernova; such an object could support itself from gravitational

collapse beyond the Chandrasekhar (1931) limit. The idea of neutron stars re-

mained a theoretical curiosity through the middle of the 20th century, it took

many decades before their existence could be observationally confirmed. The field

of pulsar astronomy came into existence in 1967, when graduate student Jocelyn

Bell (Burnell) detected a celestial pulsed signal at a radio frequency of 81.5 MHz

at the Mullard Radio Astronomy Observatory near Cambridge, UK (Hewish et al.

1968). Temporarily named LGM-1 for “little green men” in reference to a possible

though unlikely transmission from an extraterrestrial intelligence, the radio source

was quickly theorized to be associated with a rapidly rotating neutron star (Gold
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1968; Pacini 1968; Gold 1969). Confirmation came with the discovery of regular

pulsations from the Crab Nebula supernova remnant and the measurement of a

steady slow down in its spin rate (Staelin & Reifenstein 1968; Comella et al. 1969;

Richards & Comella 1969).

While all neutron stars are extraordinary objects, it was the discovery of the

subclass of recycled, millisecond pulsars (MSPs) that truly allowed for precision

timing experiments. Backer et al. (1982) discovered B1937+21, with a period of

1.558 ms, at Arecibo Observatory, an order of magnitude smaller than the period

of the young Crab pulsar. It remains one of the fastest spinning pulsars known, as

well as one of the most precisely timed. Since then, several hundred MSPs have

been discovered, and their extreme spin stability has opened the door to a wide

range of tests of fundamental physics previously discussed.

1.4 Basic Properties of Pulsars

The most fundamental observables of pulsars are the spin period P and period

derivative Ṗ . Different populations of pulsars fill different areas of this phase

space. Figure 1.1 shows the phase space in the form of the P − Ṗ diagram with

data taken from Manchester et al. (2005)1 and Olausen & Kaspi (2014)2. The

region in the center contains canonical pulsars (CPs), those with moderate (∼ 1 s)

periods and radio emission powered by rotation. CPs start their lives in the top

left of the figure, at low P and high Ṗ , and travel toward the bottom right (longer

but more slowly changing periods); the solid lines denote characteristic ages of

the pulsar assuming rotational energy is converted entirely into magnetic dipole

1http://www.atnf.csiro.au/research/pulsar/psrcat
2http://www.physics.mcgill.ca/~pulsar/magnetar/main.html

5

http://www.atnf.csiro.au/research/pulsar/psrcat
http://www.physics.mcgill.ca/~pulsar/magnetar/main.html


radiation and the magnetic field strength is constant. When CPs move to the

lower right, the emission mechanism shuts off and they cross the pulsar “death

line” into the shaded “graveyard” region. Note that the region is ill-defined and

is a function of the emission mechanism itself. Once they cross into the region,

the “dead” objects cease being observable radio pulsars. For neutron stars with

a main-sequence binary companion, when the companion begins to evolve off the

main sequence and increase in size, mass transfer can occur onto the neutron

star. The process of accretion will spin up neutron stars to millisecond periods

and reactivate the emission mechanism. Once fully “recycled” in this manner,

MSPs can become extremely spin stable, have a small period derivative, and act as

extremely accurate and precise clocks. Magnetars, whose primary energy reservoir

is in their magnetic fields, are shown in the top right.

Dispersion in the ionized interstellar medium results from a frequency-

dependent refractive index, resulting in pulses being delayed as a function of radio

frequency ν, with lower frequency emission traveling slower than higher frequency

emission. The dispersive delay from infinite frequency is ∆t ∝ DM/ν2, where DM

is the dispersion measure, equal to
∫ L

0
nedl, the integral of the electron density

along the line of sight. Figure 1.2 shows the dispersive delay as a function of fre-

quency for PSR J1713+0747 and the effect of proper de-dispersion. DM is another

fundamental observable of pulsars observed at multiple radio frequencies, although

precision estimation of DM is non-trivial (see Chapter 3 and Cordes et al. 2016).

Precise time-tagging of pulses from pulsars is performed by standard signal

processing methods tied to accurate timekeeping. Individual pulse shapes appear

very different but average together into a stable pulse profile. Such a waveform is

used as a template in matched filtering of new pulse profile data, a procedure that
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Figure 1.1: P − Ṗ diagram. The central region shows canonical pulsars while the
top right shows magnetars and the bottom left shows millisecond pulsars. Lines of
constant characteristic age (solid), surface magnetic field (dashed), and spin-down
luminosity (the loss rate of rotational energy given the assumption of complete
conversion of rotational energy into radiation; dashed-dotted) are overplotted. The
shaded gray region is the pulsar graveyard, with the boundary at the “death line”.
Data are taken from Manchester et al. (2005) and Olausen & Kaspi (2014).

finds the optimal pulse time of arrival (TOA) assuming that the observed pulse

at an epoch is a noisy version of the template. In general, bright pulsars with

sharp features in their template shapes and short periods will perform better as

precision clocks. Since signal-to-noise ratios (S/Ns) for single pulses from typical

MSPs are relatively low, many pulses are averaged together in a process known as
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Figure 1.2: Example of dispersion in pulses with data taken from the Green Bank
Telescope for the 24-hour global campaign on PSR J1713+0747. The panels on
the left show dispersed pulses (with wraps in phase due to pulse folding) while the
panels on the right show de-dispersed and aligned pulses. The pulses have been
coherently de-dispersed within each of the 6.25 MHz frequency channels. The
two horizontal gaps are pre-masked radio frequency interference from a Global
Positioning System satellite (signal at ∼ 1620 MHz and its reflection lower in the
band). Top: Radio pulses as a function of frequency and pulse phase. Bottom:
Pulses summed over all frequencies.

folding. The procedure assumes a well-known initial timing model for the pulsar

such that smearing of the pulse across frequency is minimized. See Chapter 5 for

more details on the topics discussed here.

Precision pulsar timing relies on our ability to accurately track each rotation

of the pulsar over a baseline of many years. Using both the TOAs and an initial
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timing model, we can update and introduce new parameter estimates that describe

the kinematics of the pulsar-observatory system. In addition to the timing model

parameters, we obtain timing residuals from the fit, defined as the difference be-

tween the data (pulse TOAs) and the timing model. Residuals allow models to be

updated over time. They also contain useful information about the noise processes

and allow us to properly characterize the noise model separately from the tim-

ing model. Residuals often show noise inconsistent with errors from the template

fitting of a finite S/N pulse alone.

1.5 Tests of Gravity with Pulsars

1.5.1 Measurements of Post-Newtonian Gravity

High-precision pulsar timing experiments have allowed for a number of extremely

stringent constraints on GR. One common method of placing constraints is in

the Parameterized Post-Newtonian (PPN) formalism, where various order post-

Newtonian corrections to classical gravity quantify physically-motivated deviations

from GR. See Will (2014) for an overview of the 10 PPN parameters. Pulsar timing

has provided some of the strongest constraints on a number of the PPN parameters.

The three α parameters measure if there exist preferred-frame effects. The

current best limit on α1 = 4 × 10−5, which causes a polarization of the pulsar’s

eccentricity vector, comes from PSR J1738+0333 (Shao & Wex 2012). Non-zero

α2 causes spin precession and alters the pulsar’s observed orbital inclination. The

non-detection of precession in the pulse profile shapes of two pulsars led to a

limit of α2 < 1.6 × 10−9 at the 95% confidence level (Shao et al. 2013). The
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parameter α3, which measures violations of total momentum conservation, is the

most stringent PPN constraint, with a value 4 × 10−20 from a set of measured

anomalous eccentricities in MSP binary orbits (Stairs et al. 2005).

A similar analysis of stable pulse profile shapes as with α2 allowed a limit on ξ,

representing anisotropies within gravitational interactions, equal to ξ < 3.9× 10−9

also at the 95% level (Shao & Wex 2013). Both α3 and ζ2 measure violations of

total momentum conservation in the form of self-acceleration of a binary center of

mass. Since α3 is so strongly constrained, its contribution to the self-acceleration

is negligible, allowing the upper limit on ζ2 to be measured at the 4 × 10−5 level

(Will 1992).

Other constraining tests of gravity have been possible with pulsar timing. As

an example, Zhu et al. (2015) placed constraints on temporal changes in the grav-

itational constant G close to the limit from Lunar Laser Ranging (Hofmann et al.

2010) and over a significantly longer baseline. Tests of Strong Equivalence Princi-

ple violations in the strong-field limit were set by the circularity of binary systems

in the Galactic potential, with the parameter ∆ < 5.6× 10−3 (Stairs et al. 2005).

1.5.2 Indirect evidence of GWs

Observational evidence for the existence of GWs first came from pulsar timing ex-

periments. Hulse & Taylor (1975) discovered the first double neutron star system,

B1913+16, at Arecibo, which eventually led to the 1993 Nobel Prize in Physics.

A tight binary with an orbital period of 7.75 hours, the system is losing angular

momentum by radiating away energy that is not detected in the electromagnetic

spectrum. The loss is inferred to be in the form of GWs, with the period becoming
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smaller and the size of the orbit shrinking by about 1 cm per year (Weisberg et

al. 2010). The decay of the period matched the prediction from GR, with the

observed-to-predicted rate of decay ratio equal to 0.96± 0.09, without taking into

account an additional kinematic correction to the observed rate from the Galactic

potential (Taylor & Weisberg 1982). Later work continued to refine the ratio, with

the value of the ratio now measured to be 0.997 ± 0.002, a much more stringent

constraint on GR (Taylor & Weisberg 1989; Weisberg et al. 2010).

1.5.3 Pulsar Timing Arrays

The concept of a pulsar timing array experiment for the detection of GWs dates

back to the realization that Doppler tracking of several spacecraft within the solar

system simultaneously could allow for a detection of GWs (Estabrook & Wahlquist

1975). It was soon realized that regular, pulsed emission could be used in the de-

tection of low-frequency GWs as the time interval between pulses changed (Sazhin

1978; Detweiler 1979). Correlations between arrival times of pulses from an array

of pulsars could be used to detect GWs of order nanohertz frequencies from merg-

ing supermassive black hole binaries (see Eqs. 1.4, 1.5; Hellings & Downs 1983;

Romani 1989; Foster & Backer 1990).

Currently, three pulsar timing array experiments are underway, run by the

North American Nanohertz Observatory for Gravitational Waves (NANOGrav;

McLaughlin 2013), the European Pulsar Timing Array (EPTA; Kramer & Cham-

pion 2013), and the Parkes Pulsar Timing Array (PPTA; Hobbs 2013; Manchester

et al. 2013). All three collaborations combine their data in a global effort called

the International Pulsar Timing Array (IPTA; Hobbs et al. 2010; Manchester &

IPTA 2013).
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Pulsar timing will result in the direct detection of low-frequency GWs in

the near future. The first direct detection of GWs in the hertz-kilohertz band

has recently come from the Laser Interferometer Gravitational-Wave Observatory

(LIGO; Abbott et al. 2016). They announced the detection of GWs coming from

merging stellar mass black holes (more massive than previously predicted) with

a signal strong enough to be visible by eye among the noise. Besides these two

types of experiments, the Laser Interferometer Space Antenna (LISA) is a future

space-based LIGO analog designed primarily to observe microhertz-hertz GWs

from massive black hole binaries and extreme mass ratio inspirals (massive black

holes with small compact object companions). In addition, very-low-frequency

GWs (sim10−16 Hz range) currently are being probed by cosmic microwave back-

ground experiments. All four bands will need to be observed in order to detect

sources across the full GW spectrum.

LIGO has demonstrated the need for a complete understanding of the detector

and the contributing noise sources in order to properly attribute an observed signal

to a GW source. During the initial LIGO run, the characterization of the noise

model demonstrated their understanding of both the instrumental systematics and

their low sensitivity during that phase of the project; they indeed detected no

astrophysical signal at that time. Upgrades to the facility have lowered the noise

floor, with current sensitivity allowing them to make the first few detections (see

also Abbott et al. 2016b). Further improvements will allow LIGO to become an

extremely sensitive GW instrument. Similarly, we require an understanding of the

noise sources within the PTA, as the signal propagates from the pulsar through

the interstellar medium to the telescope, so that we can confidently detect and

then regularly observe GWs.
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1.6 Characterization of Pulsar Timing Arrays

This dissertation describes efforts to understand a PTA as a Galactic-scale de-

tector. We want to first characterize our detector and eventually improve it, for

both the initial detection of GWs and long-term observations using PTAs. This

work focuses on all aspects of pulse propagation through the detector. In Chap-

ter 2, we discuss a multi-telescope campaign that observed one of the best-timed

pulsars. We describe the timing errors that result from non-simultaneous multi-

frequency observations and the resultant mis-estimation of the pulse dispersion

measure (DM) in Chapter 3. We next investigate causes of DM variations from a

variety of effects in Chapter 4, including linear trends, periodic or quasi-periodic

changes, and stochastic variations. In Chapter 5, we develop a white noise budget

for pulse TOAs on short (. 1 hour) timescales, characterizing the timing precision

of the NANOGrav MSPs. In Chapter 6, we investigate the timing noise excess

beyond the white noise model and update scaling relations of the excess noise as

a function of fundamental pulsar observables, moving us towards a comprehensive

noise model for the NANOGrav MSPs. In Chapter 7, we present future avenues for

research into the further characterization and calibration of our pulsar timing GW

detector. Finally, in chapter 8, we summarize our conclusions. We also include a

number of appendices at the end as reference material. Appendix A documents

the PyPulse program, a set of software tools developed primarily for handling of

pulse profile data purely in Python. Appendix B documents Quicklook, a program

built with PyPulse for the rapid data processing and inspection of pulse profiles

and their related data products.
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1.7 Appendix

Here we will derive the result of Eqs. 1.2 and 1.3. First, we will consider GR for

isolated systems, which can be approximated in two limits. Consider some source

of gravity of mass ∼ M and size ∼ R that is varying on a timescale ∼ T . We

define the dimensionless parameters

ĉ =
cT
R , Ĝ =

GMT 2

R3
, (1.8)

in a system where we choose the units such that M ∼ R ∼ T ∼ 1 and Ĝ ∼ G,

ĉ ∼ c. We can estimate the strength of gravity with the dimensionful compactness

parameter (the ratio of the gravitational binding energy to the rest energy) ε ∼

Eg/Mc2 ∼ Φ/c2 ∼ GM/Rc2 ∼ Ĝ/ĉ2, where Φ is the gravitational potential. In

the low-speed limit ε ∼ (v/c)2 � 1 (Ĝ fixed), it is useful to expand Φ in powers of

1/ĉ. The O(1) term yields the Newtonian limit for gravity while the O(1/ĉ2) term

yields what is known as post-1-Newtonian gravity, with higher order terms yielding

higher post-Newtonian corrections. However, in the low source gravity limit when

when Ĝ is small (O(Ĝ), ĉ fixed), we obtain the linearized gravity formalism useful

for describing GWs. In the Ĝ → 0 limit, we recover the equations of motion for

special relativity. Both limits are useful for simply describing a wide range of

different phenomena.

GWs are derived from plane-wave solutions in the linearized gravity framework.

For clarity, we define our coordinates such that xµ = (ct, x, y, z) and the Minkowski

metric is ηµν = diag(−1, 1, 1, 1). We can approximate the metric in the weak-field

limit as flat, Minkowski spacetime with a small perturbation metric added,

gµν = ηµν + hµν +O([hµν ]
2), |hµν | � 1. (1.9)

We will ignore all higher-order (non-linear) terms of hµν . It is convenient to define
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the trace-reversed metric perturbation as

h̄µν ≡ hµν −
1

2
hηµν (1.10)

while choosing the Lorenz gauge such that ∂µh̄µν = 0. We note that h = ηµνhµν

and therefore h̄ = −h and is in “trace-reversed” form. With our choice of gauge,

the linearized Einstein field equations are then, after combining Eqs. 1.1 and 1.10,

we arrive at Eq. 1.2, which we again write as

�h̄µν = −16πG

c4
Tµν . (1.11)

In vacuum far away from any source, the right hand side is zero and we arrive at

the usual form of the wave equation, �h̄µν = 0. Given the vacuum assumption,

we can write the metric perturbation in the transverse-traceless (TT) gauge, such

that it is purely spatial (hTT
0ν = 0), transverse to the direction of motion (∂µhTT

µν =

0), and traceless (ηµνhTT
µν = hTT = 0). We note that the trace-reversed metric

perturbation, again assuming the vacuum solution, will equal the original metric

perturbation in the transeverse-traceless gauge (h̄TT
µν = hTT

µν ) and so we will drop

the “bar” for convenience.

We can write the usual ansatz for the wave equation solution as

hTT
µν = Re

[
Cµνe

ikλx
λ
]

= Re
[
Cµνe

i(kz−ωt)
]
, (1.12)

where Cµν is a constant, symmetric “amplitude” metric, kλ = (ω/c, k1, k2, k3) =

(ω/c, 0, 0, k) is the wave vector pointing in the z-direction, ω is the wave (angular)

frequency. The usual dispersion relation ω = kc is satisfied because the wave

vector is null (kλk
λ = 0) in the vacuum solution. Under the condition that the

perturbation is transverse, we have in general that

∂µhTT
µν = iCµνk

µeikλx
λ

= 0, (1.13)
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which implies kµCµν = 0. Like hTT
µν , by definition Cµν must be purely spatial and

thus C0ν = 0, and combining both conditions on Cµν , we find that C3ν = 0 and

the tensor’s only nonzero components are where µ, ν ∈ {1, 2}. The matrix form

can be written as

Cµν =




0 0 0 0

0 C11 C12 0

0 C12 −C11 0

0 0 0 0



≡




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0



, (1.14)

where we have utilized the fact that Cµν must be traceless and symmetric. On the

right, we have renamed the coefficients to describe the “plus” (+) and “cross” (×)

polarization modes of the wave.

We will now derive the scaling relations for a binary system emitting GWs

as shown by Eq. 1.3. Consider two masses m1, m2 orbiting in a binary far away

from the observer at a distance D. Analogously to electromagnetism, we can use a

multipole formulation to describe the nature of gravitational radiation. Note that

such a formulation treats gravity as a vector (spin-one) field rather than a tensor

(spin-two) field; however, it is useful to obtain the approximate scaling relations.

The mass monopole, equivalent to the electric monopole, will simply equal
∑

imi

and does not produce radiation because it is conserved. The mass dipole, equiva-

lent to the electric dipole, will be
∑

imiri and will also produce no radiation. The

first time-derivative will be
∑

imiṙi, which is the constant momentum and there-

fore cannot produce radiation either. Now we must also consider the equivalent to

magnetic dipole radiation. The magnetic moment µ ∼ r× j ∼ r× (ρv), where r is

the position vector and j is the electric current density equal to the charge density

ρ times the velocity vector v. Thus, the analogous expression to the magnetic mo-

mentum is the angular momentum of the system. Since the second time-derivative
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of the magnetic moment is what generates magnetic-dipole radiation, we focus on

the second time-derivative of the angular momentum, which is zero and therefore

no gravitational dipole radiation can be generated.

The next order term is the gravitational quadrupole, again analogous to the

electric quadrupole. The power radiated for such a quadrupole is L ∼ 〈
...
-I

2〉, where

Ijk ∼
∑

imirijrik is the second moment of the mass distribution, -Ijk is the trace-

free part of Ijk, and the average occurs over many characteristic periods of the

source.

Recall the two masses orbiting each other and assume m1 ∼ m2 ∼ M . The

amplitude of the gravitational field far from the source (and transverse) will be h ∝

I/D ∼ MR2/D (analogous to the electric radiation field E ∼ qa/D). We require

two time derivatives of the Ijk so that in geometrized units (where G = c = 1 and

mass, length, and time are in equivalent units), the strain is dimensionless. By

dimensional analysis, we include the prefactor G/c4, and

hjk ∼
G

Dc4
Ïjk. (1.15)

For reference, the full form of the quadrupole formula can be solved with the use

of Green’s functions and Eq. 1.2, and includes Ïjk evaluated at the retarded time

t− r/c and another factor of 2 out front. We can continue with the approximation

and show that Eq. 1.15 can be written as

h ∼ G

Dc4

MR2

T 2
, (1.16)

which yields the result given by Eq. 1.3. See chapter 36 of Misner et al. (1973)

and chapter 7 of Carroll (2004) for more information regarding the choices made

in our approximations.
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CHAPTER 2

A 24 HR GLOBAL CAMPAIGN TO ASSESS PRECISION TIMING

OF THE MILLISECOND PULSAR J1713+0747

The radio millisecond pulsar J1713+0747 is regarded as one of the highest-

precision clocks in the sky, and is regularly timed for the purpose of detecting

gravitational waves. The International Pulsar Timing Array collaboration under-

took a 24-hour global observation of PSR J1713+0747 in an effort to better quan-

tify sources of timing noise in this pulsar, particularly on intermediate (1 – 24 hr)

timescales. We observed the pulsar continuously over 24 hr with the Arecibo, Ef-

felsberg, GMRT, Green Bank, LOFAR, Lovell, Nançay, Parkes, and WSRT radio

telescopes. The combined pulse times-of-arrival presented here provide an esti-

mate of what sources of timing noise, excluding DM variations, would be present

as compared to an idealized
√
N improvement in timing precision, where N is

the number of pulses analyzed. In the case of this particular pulsar, we find that

intrinsic pulse phase jitter dominates arrival time precision when the S/N of sin-

gle pulses exceeds unity, as measured using the eight telescopes that observed at

L-band/1.4 GHz. We present first results of specific phenomena probed on the un-

usually long timescale (for a single continuous observing session) of tens of hours,

in particular interstellar scintillation, and discuss the degree to which scintillation

and profile evolution affect precision timing. This paper presents the data set as a

basis for future, deeper studies.

Published: Dolch, T., Lam, M. T., et al., 2014, ApJ, 794, 21
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2.1 Introduction

The International Pulsar Timing Array1 (IPTA; Hobbs et al. 2010, Manchester &

IPTA 2013) is a gravitational wave (GW) detector currently consisting of ∼ 50

pulsars distributed across the sky, monitored regularly by up to seven telescopes

around the world: the Arecibo Observatory in the US, the Effelsberg radio tele-

scope in Germany, the NRAO Green Bank Telescope (GBT) in the US, the Lovell

radio telescope at Jodrell Bank Observatory in the UK, the Nançay radio tele-

scope in France, the Parkes telescope in Australia, and the Westerbork Synthesis

Radio Telescope (WSRT) in the Netherlands. Some of the pulsars in the IPTA

have been precision-timed for a decade or more. These observations are performed

by the European Pulsar Timing Array (EPTA; Kramer & Champion 2013), the

North American Nanohertz Observatory for Gravitational Waves (NANOGrav;

McLaughlin 2013), and the Parkes Pulsar Timing Array (PPTA; Hobbs 2013,

Manchester et al. 2013). The three collaborations combine their data as the IPTA.

Pulsar timing compares times-of-arrival (TOAs) to those predicted from a

model that describes the pulsar’s rotation, its binary motion, the interstellar

medium (ISM) between us and the pulsar, and the Earth’s motion in the Solar Sys-

tem. The measured TOAs are typically derived from pulsar profiles that have been

averaged over the observation duration; and referenced against a high-precision fre-

quency standard at the observatories (typically hydrogen masers); which in turn

is referenced to an international timing standard (Lorimer et al. 2004). If the re-

sulting differences between measured and modelled TOAs (the so-called “timing

residuals”) deviate significantly from zero, this indicates astrophysical processes

that are either not (or not completely) accounted for by the timing model. One

1http://ipta.phys.wvu.edu
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possibility for such a process is long-period GWs perturbing the spacing between

pulses as they propagate from a pulsar to the Earth. Obtaining accurate enough

timing residuals to detect these GWs requires repeated measurements over many

years. Sensitivity to GWs increases as observation duration grows, and the longest

observation spans, as well as the red spectrum of the expected GWs, mean that

the array is most sensitive at a frequency of about 10 yr (Sesana 2013). Individual

TOAs are obtained by measuring the offset of emission beamed across the line-of-

sight (LOS) at a given time from a template profile shape. Pulses can be averaged

over a subintegration time, also known as “folding” according to a best-known

pulse period. The template profile is high-S/N and often averaged from long-term

observations. From the radiometer equation relevant for pulsars in Lorimer et al.

(2004) we have:

S/N ∝ G
√
tint∆f

Tsys

(2.1)

in which S/N represents the integrated pulse S/N, G the telescope gain, tint the

pulse subintegration time, ∆f the bandwidth, and Tsys the telescope’s system

temperature. Thus subintegration time, bandwidth, and gain are all important

observational parameters, with G/Tsys most significantly impacting the reduction

of radiometer noise, assuming we are comparing sensitivities for the same slice in

frequency, and given that the telescopes are all equipped with receivers having

state-of-the-art Tsys levels. (Throughout this paper, pulse S/N will refer to the

ratio of the peak pulse amplitude to the standard deviation of the mean-subtracted

off-pulse amplitudes.)

Pulsar timing arrays (PTAs) aim to detect perturbations due to GWs (Sazhin

1978, Foster & Backer 1990) in TOAs from millisecond pulsars (MSPs) on the

order of 100 ns (Jenet et al. 2004) after the TOAs are corrected for many other

effects. These include terrestrial clock calibration, solar system ephemeris, vari-
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ations in dispersion measure (DM; proportional to the integrated LOS electron

column density), proper motion, and position errors, all in the presence of noise

due to other GWs at the source pulsars themselves. While the modeling uncer-

tainties due to all the effects just listed are significant, GWs should perturb TOAs

in a correlated way across the sky as a function of angle-of-separation between

pulsars (Hellings & Downs 1983). This correlation makes the detection criterion

less sensitive to any systematic errors in the TOAs or in the timing model for any

one pulsar. Detectable strains (spatial strains due to GWs; h) are expected to be

on the order of h ∼ 10−15 at nHz frequencies (Sesana 2013). Plausible sources pro-

ducing GW strains in the PTA frequency range include: a stochastic background

of GWs (Detweiler 1979, Hellings & Downs 1983) due to merging supermassive

black hole binaries (SMBHBs), continuous wave sources from individual SMBHBs

in z < 1.5 galaxies (Sesana et al. 2009), bursts on timescales of months from SMB-

HBs in highly elliptical orbits (Finn & Lommen 2010), cosmic strings (Starobinskǐi

1979, Sanidas et al. 2013), phase transitions in the early universe (Caprini et al.

2010), and relic GWs from the era of inflation (Grishchuk 2005). Additionally,

PTAs make possible the detection of GW bursts-with-memory, signals that are

anticipated from events such as the final merger of SMBHBs and potentially from

exotic phenomena at extremely high redshift (van Haasteren & Levin 2010, Cordes

& Jenet 2012, Madison et al. 2014).

Through the IPTA consortium, all three PTAs (NANOGrav, the EPTA, and

the PPTA) share timing data from their seven different observatories. The seven

telescopes have different receivers, backend instruments, sensitivities, and radio

frequency interference (RFI) environments, and have been observing their selected

sets of pulsars for a range of epochs. Each telescope also has a history of regularly

improving instrumentation, and thus TOAs obtained at later times are often of a
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much higher quality than those from earlier times. This trend is helpful for tim-

ing precision, but a wider bandwidth may require a more complicated frequency-

dependent pulse profile model, due to frequency-dependent pulse shapes (Liu et

al. 2014, Pennucci et al. 2014). Differences amongst PTAs include the number of

standard observing frequencies and the methods for modeling DM variations. For-

tunately, many of these difficulties in data combination are not insurmountable,

and tremendous progress has already been made (see Manchester & IPTA 2013).

The benefits of such a combination are many, and include an improved cadence,

cross checks, better frequency coverage, and more pulsars correlated across the sky.

Apart from the need to combine data from many telescopes, there is also

the need to better understand what might intrinsically limit timing quality.

PSR J1713+0747 (Foster et al. 1993) is regularly observed by all IPTA telescopes,

and provides much of the sensitivity for GW upper limit calculation (Arzouma-

nian et al. 2014) with a timing stability of ∼ 100 ns on timescales of five years or

more (Verbiest et al. 2009). In contrast, the first MSP discovered, PSR B1937+21,

is well known to be extremely stable on the order of weeks to months, but its

residuals show a significant red noise power spectrum visible on timescales of years

(Kaspi et al. 1994). As we design larger telescopes and observing programs, it is

imperative that we know the fundamental limits of timing precision, i.e. at what

point additional gain, observing time, or bandwidth will not increase our timing

precision.

Upper limit papers such as those by Shannon et al. (2013), van Haasteren

et al. (2011), and Demorest et al. (2013) have all calculated GW limits based on

TOAs over 5+ years. If the observation duration at a single epoch were increased

from the typical subintegration time by a factor of X, the timing precision (in the
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absence of other limiting effects) would be naively expected to improve by
√

X as

in Equation 1. This is simply due to the fact that the number of pulses collected

would increase, if TOAs (in the absence of GWs) can be fitted to standard timing

models such that the residuals are white noise, assuming there are no significant

pulse shape changes between observation epochs.

Many properties of a pulsar along its particular LOS are not precisely pre-

dictable: DM variations, interstellar scintillation (ISS), scattering variations, and

low-level glitches, to name a few. Glitches are not observed in PSR J1713+0747

or in MSPs in general (Espinoza et al. 2011), though they may be present at low

amplitudes in many pulsars (see, however, Espinoza et al. 2014) and therefore may

act as a limiting factor in searches for GWs; they may be especially problematic

sources of noise in searches for GW bursts-with-memory. M28A is another ex-

ception (Cognard & Backer 2004), though admittedly this may be because it is

particularly young for an MSP.

Pulse phase jitter, which is independent of radio frequency, is also a limit-

ing factor for pulsar timing. Jitter, also known as pulse-to-pulse modulation,

was first described in Cordes & Downs (1985) for canonical pulsars, established

for PSR B1937+21 by Cordes et al. (1990), and more recently measured in

PSR J1713+0747 in Shannon et al. (2014) and Shannon & Cordes (2012). The

term refers to the distribution of arrival times of single pulses about the the peak

of the averaged template pulse, which have slight offsets in pulse phase. Neither

increasing telescope size nor bandwidth eliminates the presence of TOA jitter er-

rors, jitter being both broadband and independent of pulse profile S/N. Generally,

the only way to reduce jitter-induced white noise in most pulsars is to increase

the observation duration (Cordes et al. 2004), though there are exceptions; see
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Os lowski et al. (2013) and Os lowski et al. (2011) for an example of a jitter mitiga-

tion technique on PSR J0437−4715.
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These considerations motivate observations of PSR J1713+0747 for 24 contin-

uous hours, using nine radio telescopes: the seven IPTA telescopes along with

LOFAR (LOw Frequency ARray, van Haarlem et al. 2013, Stappers et al. 2011)

in the Netherlands and the GMRT (Giant Meterwave Radio Telescope) in India.

See Table 1 for details of the allotted frequencies for each telescope. The duration

of 24 hr was chosen because MSP timing has been explored at the hour and week

timescales, but not in the intermediate regime. The inclusion of LOFAR provided

an ultra-low frequency (110 – 190 MHz) component to the observation, sampling

a frequency range that features prominent effects from the interstellar medium.

Observing at L-band/1.4 GHz is ideal for studying the timing properties of this

particular pulsar, being reasonably bright given its flux spectrum with a power-

law of slope of –1.7 (Kuzmin & Losovsky 2001), but not significantly affected by red

noise in the timing residuals due to the ISM (Keith et al. 2013). The GMRT filled

in the time coverage gap between Parkes and the European telescopes, enabling a

continuous 24 hr of observing.

Another major science goal of the global PSR J1713+0747 observation relates

to the LEAP project (Large European Array for Pulsars; Bassa et al. 2016, Kramer

& Champion 2013), which uses the Effelsberg, Nançay, Lovell, WSRT, and Sar-

dinia radio telescopes as a phased array, together as sensitive as Arecibo, with a

comparable total collecting area (3 × 104 m2), but with a much greater observ-

able declination range than Arecibo. As PTAs advance, this configuration may

prove to be critical for the detection of GWs. The 24-hr global observation of

PSR J1713+0747 helps the LEAP effort by adding three more telescopes – Arecibo

itself, as well as the Green Bank Telescope and the GMRT. The present dataset

therefore opens up the possibility of experimenting with a telescope having over

twice the collecting area of Arecibo alone. The combined effort will be referred to
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Table 2.2. Baseband Observing Parameters

Telescope Obs. Mode Start UT End UT Cent. Freq. Bandwidth
(MHz) (MHz)

Arecibo BBa 23-JUN 02:30 23-JUN 03:00 1378 200
Effelsberg BB 22-JUN 22:15 22-JUN 23:45 1396 128

BB 23-JUN 02:05 23-JUN 02:50 1396 128
GBT BB 22-JUN 22:15 22-JUN 23:15 1378 200

BB 23-JUN 01:50 23-JUN 02:52 1378 200
GMRT BB 22-JUN 22:24 23-JUN 00:00 1387 33.3
Lovell BB 22-JUN 22:14 22-JUN 23:44 1396 128

BB 23-JUN 01:47 23-JUN 02:56 1396 128
Parkes BB 22-JUN 10:20 22-JUN 16:20 1369 256

Westerbork BB 22-JUN 22:16 22-JUN 23:45 1398 128
BB 23-JUN 02:05 23-JUN 02:51 1398 128

aBaseband voltage recording mode

in the present paper as GiantLEAP.

This dataset also represents a unique opportunity to measure clock offsets

between telescopes and how they vary across overlapping time intervals. When

combining TOAs from different telescopes (or when backends change on a single

telescope) an offset or “jump” is needed. Such a jump can be due to delays in the

backends themselves, such as cable delays, conspiring with factors that are difficult

to quantify individually (see Lommen & Demorest 2013 and Kramer & Champion

2013 for further explanation). The jumps can then be quantified by fitting for

one arbitrary timing offset per telescope/backend pair per frequency only in the

overlapping region, such that the rms of the combined dataset is minimized. Simul-

taneous observations – the longer the better – provide an opportunity to measure

such offsets and their drifts with high accuracy.
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Timing stability on the ∼ 24 hr timescale can also be quantified using the Allan

variance of the residuals. The Allan variance was originally used to quantify the

stability of atomic clocks (see Matsakis et al. 1997 for details). The present dataset

allows us to evaluate the Allan variance for clock frequencies of 10−2 Hz all the way

into frequencies corresponding to the five or even twenty year datasets (Zhu et al.

2015) that exist for PSR J1713+0747.

Yet another goal of the PSR J1713+0747 24-hour global campaign is to assess

a noise floor. How does rms precision increase as longer timespans of data are

analyzed? Does the improvement “bottom out” or continue indefinitely with the

number of collected pulses on these timescales?

We intend the present paper to be a description of the data set itself as well

as being an introduction to a series of papers, given the size of the dataset and

the large number of science goals. Here we present some first science results, and

intend to expand upon them and address other topics in later papers. In §2,

we describe the observation and the resulting dataset in detail, supplemented by

the Appendix. In §3, we explore a number of first results emerging from the all-

telescope analysis. §4 shows some general first results on the timing error budget,

and finally §5 mentions some future paper topics based on the data.

2.2 Description of the Data

The observations were conducted on 22 Jun 2013 (MJD 56465 – 56466) starting

with the Parkes Telescope and progressing through the other eight telescopes for as

much time as possible between rise and set. The observation timeline can be seen

in Figure 1. The time of year was such that local midnight roughly corresponded
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to the middle of each telescope’s observation. PSR J1713+0747 was approximately

146o from the Sun, minimizing the possibility of any solar effects on the data (You

et al. 2007).

As Figure 1 shows, there were different modes used amongst the telescopes –

ordinary pulse folding, baseband mode, coherent filterbank mode (formed offline),

and non-folded intensity integrations (also known as “coherent search mode”).

For ordinary pulse folding, coherent de-dispersion is applied in real time (Hankins

& Rickett 1975), correcting for pulse delays due to dispersion in the ISM across

few-MHz channels (with the exception of the DFB backends at Parkes in which

de-dispersion is applied after the fact – see Appendix). All the non-baseband

data presented here have coherent de-dispersion applied. Observing in baseband

mode affords a number of advantages. For the science goal of expanding LEAP

with Arecibo and GBT, baseband recording is a requirement of any phased array

formed offline. It also allows us to evaluate how cyclic spectroscopy (Demorest

2011, Walker et al. 2013, Stinebring 2013) might improve the quality of some of

the dataset as a method of obtaining a significantly higher frequency resolution

(Archibald et al. 2014), Jones et al. 2014, in preparation). The baseband sessions

were driven by when the transit telescopes (Arecibo and Nançay) could observe the

pulsar. Hence, the first baseband session was when the source transited at Nançay,

when baseband data was obtained at GMRT, Lovell, Effelsberg, Westerbork, GBT

and Nançay, while the second session was when the source transited at Arecibo,

and baseband data was obtained with the Lovell, Effelsberg, Westerbork, GBT

and Arecibo telescopes. Non-folded intensity integrating is similar to baseband

mode, except that intensities rather than signed voltages are recorded, without

phase information, resulting in a more manageable data size. Both baseband data

and non-folded intensity recording yield single pulse information. Otherwise, single
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Figure 2.2: 24-Hour Timing Residuals: timing residuals for the nine telescopes
as a function of time. Values shown are for L-band/1.4 GHz observations unless
otherwise noted. Uncertainties on each residual are not shown here in order to
maintain clarity. In all cases, the fitting error on individual residuals is on the
order of the scatter of all residuals shown for a particular telescope. All residual
values are for 120 s integrations, except LOFAR which is for 20 min. The increase in
residual values in the third and fourth rows from the top is due to most telescopes
having switched to the lower bandwidth baseband mode. Residual values from the
GMRT, WSRT-350 MHz, and LOFAR-150 MHz are scaled down by factors of 10,
10, and 100 respectively in order to show all residuals in a single panel.
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pulses are not recoverable due to the folding process.

Baseband was not, in general, the default observing mode. Taking baseband

data for the entire rise-to-set time at each telescope would be cumbersome in terms

of data volume (which as it is approached 60 TB total largely due to the baseband

component) and in some cases would also limit bandwidth. For example, in the

case of the GUPPI/PUPPI backends (Green Bank / Puerto Rican Ultimate Pulsar

Processing Instrument; DuPlain et al. 2008), baseband recording can only be con-

ducted over 200 MHz of bandwidth, as opposed to the 800 MHz available for the

folding and intensity integration modes. The overlapping baseband portion of the

observation for GiantLEAP consisted of two baseband allotments (see Figure 1).

Arecibo could only participate in one of these sessions due to the limited range in

zenith angle. Parkes observed with baseband data taking in parallel for its entire

observation duration.

Reduced profiles are in the psrfits format processed with the psrchive and

dspsr software packages (Hotan et al. 2004, van Straten et al. 2012), with final

timing residuals determined by the tempo2 software package (Hobbs et al. 2006).

Residuals are generated with a common tempo2 parameter file, after having pro-

duced TOAs with psrchive based on standard observatory-specific template pulse

profiles, noise-reduced using psrchive when necessary. Different profiles are used

because of local bandpass, frequency range, and calibration differences. We cre-

ate TOAs from 120 s fiducial subintegrations in common between L-band/1.4 GHz

telescopes. This choice of subintegration time was a compromise between, on the

one hand, having a sufficient number of TOAs in order to probe timing precision

on long timescales (see §3.1), and on the other, having a minimum TOA S/N of

approximately 1 across all L-band/1.4 GHz telescopes (see §3.2 for an application

37



to measuring jitter). Further details about specific telescopes can be found in the

Appendix and in Table 1, in which the S/N of each telescope’s 120 s TOAs can be

found, with baseband details in Table 2. As can be seen in Table 1, the possible

minimum subintegration length is less than 120 s for most telescopes, providing

flexibility for future studies. Slots in which the table is blank indicate intensity

integrations, which can be integrated to any time greater than 2/∆ν, where ∆ν is

the channel width. WSRT, GMRT, and LOFAR, being multi-antenna telescopes,

observed in a tied-array mode (formed online) which dumped complex voltage

data to be coherently de-dispersed and folded using dspsr. We refer to this as

the “coherent filterbank” mode because a filterbank is formed offline, except for

GMRT, for which we still refer to the modes used as folding and baseband, given

the additional optimization employed (see Appendix for details).

We remove RFI automatically in post-processing using psrchive. The pro-

gram defines an off-pulse window by iteratively smoothing the profile and finding

the minimum. Using the maximum minus minimum intensity values defined in this

window, we apply a median filter to identify RFI spikes and flag spikes at greater

than 4σ from half the intensity difference. Any remaining particularly noisy fre-

quency channels or time integrations are manually removed after visual inspection.

At Lovell, RFI is excised in real time. For the other telescopes, post-facto algo-

rithms are used – one that excises “rows” and “columns” of RFI in frequency and

time, and another that excises RFI within the pulse profile itself according to bad

phase bins.

The residuals shown in Figure 2 were generated by folding the respective data

sets from each individual telescope with a parameter file that was created from

21 years of PSR J1713+0747 data (Zhu et al. 2015), all with the same Bureau
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International des Poids et Mesures (BIPM) correction table to the global atomic

timescale, TT(BIPM2012), with the 2013 extrapolation, and the Jet Propulsion

Laboratory DE421 planetary ephemeris. The DM (15.99113± 0.00001 pc cm−3) is

the only fitted astrophysical parameter determined from the present observation

across all L-band/1.4 GHz telescopes simultaneously. Relative offsets were also

fitted between telescopes. These are simply free parameters that align the residuals

and do not represent absolute clock offsets, and are not shown here for this reason.

The remainder of the parameters were held fixed at the Zhu et al. (2015) values

(see Table 3 in the Appendix for further details). The timing residuals at other,

higher subintegration times are computed from this base set of residuals. To test

that residuals can be averaged down without a loss in modeled timing precision,

we also generated a set of 10 s subintegration time TOAs with psrchive from the

GBT, and found that simply averaging the 10 s residuals produced new residuals

with rms values different from the 120 s tempo2 residuals at� 1σ. Therefore, we

can create 10 s residuals, average them, and obtain nearly identical 120 s residuals

to those resulting from 120 s TOAs.

The eight telescopes at L-band/1.4 GHz saw a changing spectrum due to inter-

stellar scintillation, as shown in the dynamic spectrum, or plot of pulsar intensity

vs. time and frequency, in Figure 3. Scintillation is due to the scattering and

refraction of pulsed emission in the ionized ISM, and can significantly change the

pulse profile S/N as can be seen in Table 1. Figure 3 shows that bright scintles

contribute to the high S/N of telescopes after about 23-JUN 00:00. The image

was created by fitting the telescopes’ templates via matched filtering for a given

telescope with a given profile P (ν, t) and reporting the amplitude with the off-pulse

mean subtracted. Amplitudes are converted to corresponding intensities depend-

ing on each telescope’s calibration data and then scaled to an identical color scaling
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for Figure 3. Dynamic spectra from different telescopes were scaled empirically to

match them in Figure 3, lacking absolute calibration for some telescopes, but using

the noise diode calibrations employed (see Appendix for details). A cross-hatched

pattern is clear. Such a pattern is usually only observable at low frequencies due to

the small scintle size in frequency and time even for modest bandwidths (Rickett

1970). Note the narrowing of the scintillation bandwidth (∆ν , the typical scintle

width in frequency) as a function of frequency, along with a decrease in scintillation

timescale (∆t, the typical timescale for scintillation) with decrease in frequency.

Scintillation patterns are shown to overlap well between telescopes, thus establish-

ing a typical spatial scale of a waveform – see §3.3. In some cases there appear

to be deviations between the scintillation patterns seen at different telescopes, but

this always corresponds to times when the source was close to rising or setting at

one of the telescopes involved.

Narrowband template fitting (Taylor 1992) assumes a relatively constant profile

with frequency. In addition to distorting the pulse phase, merely averaging across

frequency would result in drifting residuals with a non-white appearance (Craft

1970), due to the intrinsic profile evolution acting in combination with ISS. Profile

shape changes with frequency are present in all canonical pulsars – see Hankins

& Rickett (1986) for multifrequency observations on many pulsars, and Hassall

et al. (2013) which uses observations from LOFAR and other telescopes. Similar

shape changes have also been found in MSPs (Kramer et al. 1999), including

PSR J1713+0747.

Figure 4 shows the presence of profile evolution with frequency in this observa-

tion’s GBT data. Starting with 8 hrs of GBT data, we use the fiducial subintegra-

tion length of 120 s and a subband size of 50 MHz. We sum profiles in time to get
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16 profiles as a function of observing frequency and phase, P (ν, φ). These profiles

are de-dispersed using the best fit, L-band/1.4 GHz DM. For each P (ν, φ), we fit a

NANOGrav standard template T (φ) to the data profile P (ν, φ) to find the best-fit

phase offset δφ(ν) and amplitude A(ν). We create difference profiles by shifting

and scaling T (φ) using the best fit phase offset δφ(ν) and amplitude A(ν) for each

frequency and then subtracting as D(ν, φ) = P (ν, φ) − A(ν)T (φ − δφ(ν)), where

D(ν, φ) are the difference profiles. These are plotted in the main panel of Figure 4.

The right panel shows the timing offsets as a function of frequency, δφ(ν), with

the 1422 MHz profile set to zero offset because the template most closely resem-

bles these data in the center of the band. These timing offsets will be dependent

on the value of our measured DM, which in turn is dependent on the frequency

dependent (FD) model parameters (Arzoumanian et al. 2015) used in tempo2.

The FD parameters correspond to the coefficients of polynomials of the logarithm

of radio frequency that show the TOA shift due to profile evolution. If the profile

evolution within a subband is small and if the FD model parameters quantify the

offsets well when each subband is independently used to create a set of timing

residuals, then the weighted broadband residuals should be consistent with the

white noise expected from scintillation. As Figure 2 shows for all the telescopes,

the residuals are qualitatively white noise-like in character. The broadband weight-

ing, then, appears to correctly take the profile evolution / scintillation interaction

into account. The profile evolution shown with frequency in Figure 4 is likely to

be intrinsic and not an instrumental artifact because the equivalent Arecibo plot

(i.e. using a different receiver at a different telescope) is nearly identical across

the same bandwidth. A more detailed analysis of the observed profile frequency

evolution is a subject of future work.

We address this profile-evolution problem for all telescopes with bandwidths of
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100 MHz or more (that is, all telescopes except the GMRT) by computing TOAs for

multiple narrow frequency channels, using psrchive as described above. For the

GBT and for Arecibo, the band is divided into 16 bins of 50 MHz each. The data

from the other telescopes are split into subbands in similar fashion. We then obtain

sets of narrowband timing residuals using the FD parameters in tempo2. The four

best-fit FD parameters can be found in Table 3 in the Appendix, representing third-

order polynomial coefficients starting with the lowest order first. We then perform

a weighted mean of these values in order to obtain the broadband residuals. For

all telescopes we use the FD parameters with tempo2 independently computed

from (Zhu et al. 2015; provided as preliminary values prior to publication).

Intrinsic pulse profile evolution is thought to arise from varying offsets between

the emission region and the surface of the neutron star, with higher frequency

emission being produced closer to the surface (see Cordes 2013 for a more detailed

discussion). If a profile at a high narrowband frequency differs significantly from a

profile at a low narrowband frequency, then any frequency-dependent pulse shape

changes will be highly covariant with the DM measurements at each epoch. Multi-

frequency timing minimizes such covariances. The timing offsets due to intrinsic

pulse shape changes with radio frequency are constant in time. Effects due to

interstellar scintillation and scattering will depend on time, however. The former

produces a varying S/N across the band due to scintillation that changes the

relative weighting of each subband as part of the final TOA; the latter broadens

the pulse, resulting in a scattering delay. (The L-band/1.4 GHz frequency is chosen,

for the present dataset and for most standard timing observations, so that scatter

broadening is minimal.)
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2.3 Analysis of the Multi-Telescope Data

The following assumptions and terminology will be used throughout this section:

The rms of the timing residuals over the total time span is consistent with the

errors expected from a finite S/N ratio and from single-pulse stochasticity that

is intrinsic to the pulsar. From Cordes & Shannon (2010), finite S/Ns yield an

approximate template fitting error of

σS/N =
Weff

S(Nφ)
√
Nφ

, (2.2)

where S(Nφ) is the S/N of the pulse profile (peak to rms off-pulse) that has Nφ

phase bins and Weff is the effective pulse width. Cordes & Shannon (2010) give an

expression for Weff that we use for PSR J1713+0747, yielding 0.54 ms.

Here, Nφ is included because for the GMRT, Nφ was 64, while for the other

telescopes, Nφ was 512, and this difference has been noted in all relevant calcu-

lations. These values for Nφ are chosen such that Nφ is small enough to afford

sub-µs timing precision at some telescopes, while at the same time, producing a

S(Nφ) small enough such that the pulse peak measurement is reasonably accurate.

When we use σR, it will refer to the total residual rms, whether template fitting

error, jitter, radiometer white noise, or white noise due to the ISM.

2.3.1 Timing Residual Precision vs. Integration Time

In Figure 5 we show the logarithmic change of the L-band/1.4 GHz TOA residual

rms, a proxy for timing precision, as both a function of subintegration time T and

of the corresponding number of pulses N . The time per TOA is plotted on the
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abscissa, and the corresponding number of pulses for each residual subintegration

time is also shown. The ordinate shows the rms of the residuals within the entire

observation time of the telescope. For this reason, the data points for Arecibo

do not extend to as long of a timescale as the other telescopes despite the high

sensitivity. We start from TOAs from the base subintegration time of 120 s, and in-

tegrate down (i.e. to larger subintegrations) for each successive step. We show this

function for five of the L-band/1.4 GHz telescopes, choosing the maximum inte-

gration time at each telescope which corresponds to at least eight subintegrations

in order to ensure that small-number statistics (due to having only a few long-

subintegration residuals) are not important. Nançay and WSRT are not shown

because of their short, non-contiguous observing times. GMRT’s residuals did not

probe small values of N and are not shown. Error bars are 1σ and are simply the

standard error of the scattered subintegration rms values in a block of TOAs. For

reference, the expected 1/
√
N slope is plotted. Each successive data point is not

independent of the data points in Figure 5 for small values of N . In all telescopes,

there are no significant deviations from this simple improvement in timing rms with

number of pulses collected. This is expected behavior for the backends used in this

observation (see Stairs et al. 2002 that uses data from PSR B1534+12 as a demon-

stration that this kind of integrating-down behavior works efficiently for coherent

de-dispersion machines in contrast to filterbank machines). For PSR J1713+0747,

this means that on timescales of ∼ 1 hr (the largest time which on this timescale we

can make multiple samples with a minimum of eight TOAs), there is no significant

evidence of an absolute noise floor.

The comparative sensitivity of the telescopes can be seen along with the fact

that longer tracks produce smaller uncertainties in the residual rms σR. Arecibo

and GBT have up to eight times the bandwidth as some of the other telescopes and,
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Figure 2.4: Differential offset times vs. frequency for the GBT. The top panel
shows the standard NANOGrav template used for GUPPI at L-band/1.4 GHz.
The main panel shows the difference profiles as a function of frequency, calculated
by subtracting a best-fit template from the data profiles. The right panel shows the
mean-subtracted, best-fit phase offsets for each data profile versus frequency. These
offsets are a function of the FD (frequency dependent) polynomial parameters in
tempo2 that model timing offsets due to pulse profile frequency evolution. The
shape of the time offset vs. frequency curve is covariant with any residual dispersion
delay across the band.

considering also the sensitivities, fall significantly beneath the others in terms of

timing rms. Previous studies of PSR J1713+0747 (Shannon & Cordes 2012) have

shown a tracking of this 1/
√
N for anN of 1 to 105, corresponding to subintegration

times of 4.57 ms to 457 s.
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Figure 2.5: Improvement of L-band/1.4 GHz timing rms with number of collected
pulses N . Both subintegration time per residual and number of pulses are shown in
the abscissa for reference. Symbols, from top to bottom: teal squares, Lovell/JB;
green upward triangles, Parkes; red downward triangles, Effelsberg; blue circles,
GBT; magenta diamonds, Arecibo. Error bars are the standard error of the scat-
tered rms values. The dashed lines show a 1/

√
N law for reference. The residuals

are derived from telescopes with different bandwidths, and the resulting timing
rms values are dependent both on collecting area and bandwidth.

2.3.2 Timing Residual Precision From Template Fitting

and Pulse Jitter

Radiometer noise is always reduced by additional bandwidth but jitter noise, mea-

surable in high S/N timing observations, is not improved because it is identical and

correlated across frequency. Thus, the minimum expected rms in the broadband

timing residuals is somewhat higher than what we would predict from merely reduc-

ing the narrowband timing rms by the increased bandwidth factor. The error from
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jitter, given in Cordes & Shannon (2010), is σJ ∝ Weff/
√
N . The noise value σJ has

no dependence on bandwidth or telescope sensitivity. Knowing how much the rms

for an individual TOA would be composed of σJ typically requires either directly

measuring the jitter via single pulses, or measuring the correlated TOAs across

frequency. Shannon & Cordes (2012) report a value of 26µs for a single-pulse

σJ from PSR J1713+0747 also based on Arecibo observations, using both mea-

surement methods. Shannon et al. (2014) have also measured PSR J1713+0747’s

single pulse phase jitter rms as 31.1± 0.7µs. Here, we show the presence of jitter

in PSR J1713+0747 by demonstrating the non-dependence of a noise component

on telescope sensitivity.

In order to directly measure the presence of jitter in Figure 6, we binned residu-

als from all telescopes into approximately eight bins/decade in S/N and then took

the scatter of the arrival times within each bin, σR. The subintegrations used were

120 s within frequency bins of ∼ 50 MHz, and only residuals for which S/N > 1

were included.

We fit a curve given by the following equation, which comes from the assump-

tion that the white noise timing residuals, σR, are composed of two other white

noise components added in quadrature:

σR =
√
σ2

J + (σS0(S0/S))2 (2.3)

where S simply represents S/N, S0 refers to a particular fiducial S/N, and σS0 is

the timing rms due to template fitting. Using the fiducial 120 s TOAs, we find that

σJ = 0.17 ± 0.02µs, which implies a single pulse jitter of 27.0 ± 3.3µs, consistent

with the measurement in Shannon & Cordes (2012) of 26µs. This value is also

consistent within < 2σ of the more recent measurement of Shannon et al. (2014).

The other fitted parameter, σS0=1, signifying the white noise value in the absence
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Figure 2.6: Improvement of residual rms with S/N, for ∼ 50 MHz timing residuals.
Shown in the top plot are the timing residual values as a function of S/N, using
data from all telescopes. The middle plot shows the number of residuals in each
bin. In the bottom plot, rms values on the residuals are shown using logarithmic
bins with 8 bins/decade. We fit Equation 3 shown as the solid line fit, which yields
a white noise in the timing residuals due to pulse phase jitter of σJ,1 = 27.0±3.3µs.
Scaled to 120 s integrations, σJ = 0.17 ± 0.02µs. All residuals shown in the top
panel of Figure 6 are for an integration/folding time of 120 s, removing residuals
below an S/N of 1. The single pulse jitter timing rms is σJ,1, and σS0=1 is the
timing rms in the absence of jitter for a S/N of 1. The dashed line represents the
expected timing uncertainties in the absence of pulse phase jitter.

of jitter, was 25.9± 0.6µs.

The presence of jitter in PSR J1713+0747 does mean that for a telescope as

sensitive as Arecibo, LEAP, or GiantLEAP, including the future Square Kilometer

Array (SKA) or the Five-hundred-meter Aperture Spherical Telescope (FAST)
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telescopes, both σJ and the ordinary timing rms scale as 1/
√
N (Cordes et al.

2004, Cordes & Shannon 2010, Lazio 2013). The dominance of pulse phase jitter

seen in the Arecibo portion of the present study may necessitate the use of such

long tracks for all future highly-sensitive telescopes to further reduce σR. This

is seen in a particularly dramatic fashion over eight of the nine telescopes here.

Even when using one telescope alone, GBT or Arecibo for instance, the fit to σR

yields σJ,1 values of 21.6 ± 4.1µs (GBT) and 27.9 ± 5.3µs (Arecibo). The ∼ 1σ

consistency of each single-telescope value with the all-telescope value implies that

the jitter numbers reported are not telescope-dependent, and are intrinsic to the

pulsar as expected.

Single pulse phase jitter causes a timing error ∝ 1/
√
N that is independent

of S/N. The two contributions are equal for single-pulse (S/N)1 ∼ 1 (Shannon &

Cordes 2012). S/N > 1 single pulses should be present, given that a telescope is

sensitive to jitter noise (Cordes & Shannon 2010).

A more detailed analysis is deferred to a separate publication. Single pulses

can be extracted from any of the observations with baseband data or intensity

integrations, which were taken at various times during the global campaign in all

nine telescopes. However, it is interesting that fitting Equation 3 across the eight

telescopes in Figure 6 allows a jitter measurement without probing into residuals

with a subintegration time of < 120 s, much less with single pulses. The residuals

in the brightest bin, rescaled to subintegrations of a single period, correspond to

a single pulse S/N of ∼ 3.
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2.3.3 Strong Correlation of Diffractive Scintillation Be-

tween Telescopes

Figure 3 shows that the frequency-time structure in the dynamic spectrum is qual-

itatively identical between simultaneous measurements from different telescopes,

apart from low-elevation-angle observations and from masked episodes of RFI. This

high correlation includes telescope pairs with the largest separations (up to 9000

km), Parkes and GMRT; GMRT with the European telescopes (Jodrell Bank, Ef-

felsberg, and WSRT), between the GBT and the European telescopes, and between

the GBT and Arecibo.

The observations are consistent with the expectation that the dynamic spectra

for PSR J1713+0747 should be highly correlated between all terrestrial telescopes

because of the low level of scattering along the line of sight. We estimate the spatial

scale `d of the diffraction pattern from the parallax distance d = 1.05 ± 0.06 kpc

(Chatterjee et al. 2009) and the scintillation bandwidth ∆νd ≈ 0.6 ± 0.2 MHz at

0.43 GHz (Bogdanov et al. 2002) using Eq. 9 of Cordes & Rickett (1998),

`d =
1

ν

(
cd∆νd
4πC1

)1/2

, (2.4)

where C1 = 1.16 using a default, uniform Kolmogorov scattering medium. This

yields `d ≈ 5 × 104 km at 0.43 GHz and scaling by ν1.2, the diffraction scale at

1.4 GHz is `d ≈ 2× 104 km, much larger than the Earth.
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2.4 Initial Results on the Noise Budget of the Timing

Residuals

In this section we briefly consider some aspects of PSR J1713+0747’s noise budget,

in other words, whether the S/N across telescopes corresponds to expectations from

general considerations. A more detailed consideration of the noise budget will be

found in a forthcoming paper.

Figure 7 (top panel) shows the grand average profile for the eight telescopes

that observed at L-band/1.4 GHz. Low frequencies are shown in the lower panels.

Profiles are summed across the full band from individual subbands’ residual values,

weighted by the off-pulse noise values, and folded according to the measured L-

band/1.4 GHz value of DM. The resulting L-band/1.4 GHz profile has a S/N of ∼

4000, where the signal value is taken as the amplitude at the maximum value of the

summed pulse and the noise is taken from the off-pulse part of the combined profile.

S/N values were calculated using the first 100 bins of the profile for the noise

region. The profile was centered at maximum, with Nφ = 512, before summation.

See Table 1 for estimates of the degree to which each telescope contributes to the

total pulse profile S/N. Low frequency profiles are also shown for reference, showing

significant profile evolution with frequency. The pulsar is weak at low frequencies

because it appears to turn over somewhere above the LOFAR band (Hassall et al.

2014 in preparation).

The minimum rms on timing residuals from the eight-telescope L-band/1.4 GHz

profile can be estimated using Equation 2.2. Given an effective pulse width of

0.54 ms, that we have 512 phase bins, and that the 24-hr pulse profile S/N in the

grand average profile was about 4000, this yields a template fitting error, σS/N, of
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about 3 ns. Given a 24-hr implied template fitting error of 3 ns and an implied

24-hr jitter timing error of 170/
√

30/
√

24 = 6.3 ns (rescaling from the 120 s jitter

value given in §3.2 to a 24 hr value), we add these values in quadrature to arrive at

an approximate timing uncertainty of 7 ns. Jitter and template fitting alone would

then yield a timing residual error of 7 ns on a 24-hr TOA.

The uncertainty from our L-band/1.4 GHz DM measurement of 0.00001 pc cm−3

from §2 corresponds to 24 ns of smearing across the band. A better measurement of

the DM on MJD 56465 – 56466 would require incorporation of the 150 MHz LOFAR

data and the 350 MHz WSRT data, but taking into account a model of the pulse

profile evolution with frequency that extends to these lowest two frequencies. Such

a model is a topic of exploration for a future paper on interstellar electron density

variations. Any discovered DM variations, along with an improved DM smearing

value, would need to inform the noise floor assessment.

2.5 Further Work

The initial results presented will be important for the three PTAs and for the

IPTA as a whole. For some telescopes, PSR J1713+0747 is timed (or is under

consideration to be timed) for longer observation durations at each epoch, or at

a higher observing cadence. Being amongst a small set of pulsars with the low-

est timing residual rms values, it strongly influences the sensitivity of the entire

IPTA, despite the necessity of calculating angular correlations in order to popu-

late the Hellings and Downs diagram and detect a stochastic background of GWs

(Hellings & Downs 1983). Increasing the observation duration for these pulsars

helps the sensitivity of the IPTA to other types of GW source populations, such
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Figure 2.7: The grand average profile for all telescopes. The top panel was created
across all bandwidths from those telescopes which observed at L-band/1.4 GHz.
While it has been shown in §2 that there is some profile smearing occurring due
to the pulse profile evolution with frequency, we sum in weighted fashion from
individual subbands’ residual values. The resulting profile has a S/N of ∼ 4000,
where the signal value is taken as the amplitude at the maximum value of the
summed pulse and the noise is taken in the first 100 phase bins of the off-pulse part
of the combined profile. The bottom two panels show the grand average profiles for
low frequencies, manifesting the significant profile evolution with frequency. The
DM for all telescopes is set by the fitted L-band/1.4 GHz DM.

as burst, continuous wave, and memory bursts (see Arzoumanian et al. 2014 for

current limits on continuous wave sources). The first results presented in this work

provide a starting point on the subtleties that may emerge with an increasing de-

pendence on PSR J1713+0747 and similar pulsars such as PSR J0437−4715 and

PSR J1909−3744.

We plan to release papers on the following subjects, among others, based on

this dataset:
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The Noise Budget of the 24-Hour Global Observation of PSR J1713+0747 :

the question to be explored here is the degree to which one can dissect the noise

present on the different timescales relevant in this observation. From single pulses

at the µs resolution all the way to the full 24 hr, the statistical structure of noise

in timing residuals can be probed using various diagnostics. Structure on different

timescales can be probed by looking at the pulsar with the Allan variance function.

Single pulses can also be exploited in order to search for smaller timescale structure

such as giant pulses, mode changes, and drifting sub-pulses (see Shannon & Cordes

2010). Shape changes can be probed and possibly mitigated using various methods

(Cordes 1993, Demorest 2007, Os lowski et al. 2011).

Interstellar Electron Density Variations and Pulse Profile Frequency Evolution:

the all-telescope dynamic spectrum can yield interesting information in a further

analysis. Given the data obtained at low-frequencies with LOFAR and WSRT,

it will be informative to search for correlations between events occurring in the

L-band/1.4 GHz dynamic spectrum and the highly scattered structure at 150 MHz

and 350 MHz respectively. Analysis can be done using the LOFAR and WSRT

data to obtain more accurate DM measurements, while taking into account the

significant profile evolution between the two low-frequency observations and the

L-band/1.4 GHz observations.

GiantLEAP : one of the signature objectives of this observation is to use the

European telescopes, Arecibo, the GMRT, and the GBT as a single phased array,

or at least to expand LEAP with some subset thereof. In particular, RFI excision

using simultaneous data from a subset of telescopes might significantly improve

the quality of the phased array over one more locally situated. Once the proper

correlations are performed, in principle the timing rms of PSR J1713+0747 from

54



the largest simultaneous collecting area ever used will be obtained. However, what

practical limitations will come into play at realizing this ideal would be the subject

of future studies. Undoubtedly, whatever timing results will be obtained will be

highly affected by the presence of pulse phase jitter.

Polarization Studies. Most telescopes in this study took polarimetric data (see

Appendix) and studying the timescales of PSR J1713+0747’s polarization over the

24 hours could provide new insights, particularly at the single pulse level.

2.6 Conclusions

We have presented an overview of the goals and data products of the 24-hour global

campaign on PSR J1713+0747. This ∼ 60 TB dataset is useful for many goals

which will be explored in further papers, including but not limited to: better de-

termination of the overall noise budget for PTAs, a wide-bandwidth, long-timespan

examination of the effects of the ISM on pulsar timing, combining baseband data

from simultaneous observations for the GiantLEAP experiment, an examination

of single pulses and their phenomenology over the 24 hours, and many others.

In the first results presented here, some interesting conclusions can already

be drawn. PSR J1713+0747’s intrinsic pulse phase jitter (∼ 27.0µs for single

pulses) can be measured by fitting a noise model across all telescopes, even when

TOA integration times are as long as 120 s. The improvement of timing residual

rms is not found to depart significantly from a factor of 1/
√
N , where N is the

number of integrated pulses. Finally, the diffraction scale at 1.4 GHz was seen to

be `d ≈ 2× 104 km, much larger than the Earth, from the overlapping scintillation

pattern seen in the dynamic spectrum in Figure 3.
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Table 2.3. Timing Model Parameters

Parameter Value Held Fixed Parameter
in Fit?a Uncertainty

Right Ascension, α (J2000) 17:13:49.5331497 Y 5× 10−7

Declination, δ (J2000) 07:47:37.492844 Y 1.4× 10−5

Proper motion in α, να (mas yr−1) 4.922 Y 0.002
Proper motion in δ, νδ (mas yr−1) −3.909 Y 0.004
Parallax, π (mas) 0.88 Y 0.03
Spin Frequency (Hz) 218.81184381090227 Y 7× 10−14

Spin down rate (Hz2) −4.083907× 10−16 Y 8×10−22

Reference epoch (MJD) 54971 Y
Dispersion Measure (pc cm−3) 15.99113 N 1× 10−5

Profile frequency
dependency parameters
FD1 1.328× 10−5 Y 4× 10−8

FD2 −3.73× 10−5 Y 2× 10−7

FD3 3.24× 10−5 Y 7× 10−7

FD4 −1.07× 10−5 Y 5× 10−7

Solar System ephemeris DE421 Y
Reference clock TT(BIPM) Y
Binary Type T2b Y
Projected semi-major axis, x (lt-s) 32.34242245 Y 1.2× 10−7

Eccentricity, e 7.49414× 10−5 Y 6× 10−10

Time of periastron passage, T0 (MJD) 54914.0602 Y 0.0003
Orbital Period, Pb (day) 67.825147 Y 5× 10−6

Angle of periastron, ω (deg) 176.1978 Y 0.0015
Derivative of periastron angle, ω̇ (deg) 0.00049 Y 0.00014
Companion Mass, Mc (M�) 0.29 Y 0.01

aWe also fit for arbitrary jumps between telescopes, which are not astrophysical and not
shown here.
bDamour & Deruelle (1986)
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2.8 Appendix

2.8.1 Additional Observing Details

Most information about the observation can be found in Table 1. Tempo2 param-

eters are in this Appendix in Table 3, most of which derive from the parameters

calculated in (Zhu et al. 2015; provided as preliminary values prior to publication).

2.8.2 Effelsberg 100-m Radio Telescope

Effelsberg’s data taking began with 9.3 hr of contiguous observing at 1380 MHz.

The PSRIX instrument (Karuppusamy et al. 2014, in preparation) was used for

both baseband and folding modes (after real-time coherent de-dispersion). There

were two baseband sessions, one 30 min and the other 1 hr. In folding mode,

PSRIX was configured to coherently de-disperse and fold 8× 25 MHz bands. Each

resulting file has 200 MHz of bandwidth (though some channels are removed due

to RFI), 128 channels, 1024 phase bins of 4.47µs each, 10 s subintegrations, and

full polarization information. In total there were ∼ 6 hr (2.1 GB) of folding mode

data. In baseband mode, data was recorded as 8×16 MHz (128 MHz) subbands in

order to be compatible with other LEAP telescopes. The data were flux calibrated

using the noise diode, which in turn was calibrated using a North-On-South triplet

of observations of 3C 218 following the 24-hr campaign. The data were recorded

in “Timer Archive” format. They were converted to psrfits format as part of

Effelsberg’s standard data reduction pipeline.
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2.8.3 Giant Meterwave Radio Telescope

The GMRT used 22 antennas, employing two observing modes – a total offline

coherent filterbank mode with 65.1 kHz spectral and 61.44µs time resolution, and

a coherent array voltage mode with a single subband for the baseband portion

of the observation. Both these modes are described in Roy et al. (2010). The

frequency range was from 1371 MHz to 1404 MHz. There were 7 × 1 hr recording

scans interleaving with phasing scans for the array, as well as a 50 min coherent

array baseband voltage recording scan. This resulted in 436 GB of raw filterbank

data and 460 GB of voltage data. The GMRT filterbank data (61.44µs time res-

olution) are 16-bit and in a format compatible with the presto2 searching suite.

The GMRT coherent array voltage data (15 ns time resolution) are 8-bit and in

a DSPSR friendly format. The GMRT coherent array provides some built-in im-

munity to RFI as the processing pipeline adjusts the antenna phases to correct

for the effect of rotation of the sky signals, which in turn de-correlates the ter-

restrial signals. Interleaved calibrator observations (QSO J1822–096 in this case)

every 2 hr were required to optimize the coherent array sensitivity at the observing

frequencies. The antenna-based gain offsets are also corrected using this calibrator

before making the coherent beam.

2.8.4 Lovell Telescope at Jodrell Bank Observatory

L-band/1.4 GHz observations of PSR J1713+0747 were obtained with the Lovell

telescope at Jodrell Bank over an 11.5 hr timespan. The data are continuous except

for a few brief gaps due to the telescope being parked for wind constraints. Two

2http://www.cv.nrao.edu/~sransom/presto/
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instruments were used; i) the DFB performed real-time folding with incoherent

de-dispersion, producing folded 10 s subintegrations of 1024 pulse phase bins of

4.47µs in size, 0.5 MHz channels over a 384 MHz wide band centered at 1532 MHz,

ii) the ROACH, using a Reconfigurable Open Architecture Computing Hardware

FPGA board performing real-time folding with coherent de-dispersion using the

psrdada3 and dspsr software packages. This provided 10 s subintegrations with

2048 pulse phase bins of 2.23µs in size and covered 400 MHz wide band centered at

1532 MHz, split into 25 subbands of 16 MHz, each channelized to provide 0.25 MHz

channels. The ROACH was also used to record baseband data during the times

when Nançay and Arecibo observed the pulsar. Dual polarization, Nyquist sam-

pled baseband data, 8-bits digitized, was recorded for the lower 8 subbands of

16 MHz (1332 to 1460 MHz), while the remaining seventeen 16 MHz subbands per-

formed real-time folding with coherent de-dispersion as before. At the end of the

observations the baseband data was folded and coherently de-dispersed with the

same parameters as for the real-time folding to give one continuous observing run.

The spectral kurtosis method by Nita et al. (2007) for identifying and flagging RFI,

as implemented in dspsr, was used to excise RFI in real time. After the obser-

vations a combination of manual and automatic RFI excision was performed to

clean the data further. The folded profiles were polarization calibrated using the

Single Axis model (van Straten 2004) using observations of the noise diode and

observations of pulsars with known polarization properties.

3http://psrdada.sourceforge.net
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2.8.5 Low Frequency Array

LOFAR observed from 110 – 190 MHz using the BG/P beam-former and correlator

(see van Haarlem et al. 2013). The sampling time was 5.12µs and 400 subbands of

0.195 MHz each were recorded. Full polarization information was taken in complex

voltage mode; see Stappers et al. (2011) for more information on pulsar observ-

ing modes with LOFAR. The raw data volume (32-bit) was 4.5 TB/hr, yielding

40 TB of complex-voltage raw data (of which only 1 hr, 4.5 TB, of raw data has

been archived long-term; the rest is only available as folded archives, as sum-

marized in Table 1) The 40 TB value not included in total the 60 TB value for

the all-telescope data. These data were coherently de-dispersed and folded of-

fline using dspsr. The following 23 LOFAR Core stations were combined for the

9-hr observation: CS001, CS002, CS003, CS004, CS005, CS006, CS007, CS011,

CS017, CS021, CS024, CS026, CS028, CS030, CS031, CS032, CS101, CS103,

CS201, CS301, CS302, CS401, and CS501. See van Haarlem et al. (2013) for

more specific location information; by default the phase center of the tied-array

beam is placed at the position of CS002.

2.8.6 Nançay Decimetric Telescope

Nançay observed using the NUPPI (Nançay Ultimate Pulsar Processing Instru-

ment) backend at L-band/1.4 GHz with a total bandwidth of 512 MHz, split into

32×16 MHz channels and 8-bits digitized. The profiles were folded and integrated

over 1 min and finally stored in a 29 MB psrfits file. All data were coherently

de-dispersed and the total Nançay observation lasted for ∼ 1 hr. The psrchive

program pac was used to do the polarization calibration with the Single Axis
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model and automatic zapping was then applied with the paz program. The TOAs

were produced with pat using a high S/N template.

2.8.7 Parkes 64 m Telescope

The Parkes 64 m radio telescope observed PSR J1713+0747 at 1362 MHz using

both fold-mode and baseband mode in parallel for ∼ 6 hr. This time included four

3 min noise diode calibration scans, between 64 min blocks of folding. The back-

ends DFB3/4 (incoherent filterbank, 60 s foldings, 1024 frequency channels over

256 MHz bandwidth, 1024 phase bins of 4.47µs each), APSR (real-time coherent

filterbank, 30 s foldings, 512 frequency channels over 256 MHz bandwidth, 1024

phase bins of 4.47µs each), and CASPSR (30 s foldings, 400 MHz bandwidth with

∼ 10 MHz band edges, 1024 phase bins of 4.47µs each) observed in parallel, allow-

ing for simultaneous baseband and folding mode observations. RFI was removed,

and consistent results were obtained with all backends using a median filter in

the frequency domain. Polarization and flux calibration for the DFB data used

the standard monthly flux calibrations on the Hydra A radio galaxy (Manchester

et al. 2013). CASPSR was calibrated for differential gain and phase but nothing

else. RFI was mitigated using the radio-frequency domain filter implemented in

the psrchive command paz (Hotan et al. 2004). Additionally, the CASPSR in-

strument mitigates RFI in real time by rejecting portions of the data that show

distribution inconsistent with receiver noise by using a spectral kurtosis filter. Dig-

ital filterbank data were calibrated for cross coupling using a model for the feed

derived from long-track observations of the bright source PSR J0437−4715. Ob-

servations over these wide parallactic angles enable the measurement of the feed

cross coupling and ellipticity to be measured (van Straten 2004). The model used
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was the average of many long-track observations because the feed parameters were

not found to change significantly with time. CASPSR observations were not cal-

ibrated for this cross coupling. PSR J1713+0747 is only a modestly polsarized

pulsar and the effects of correction for these effects were found to be negligible

improvement on its long term timing precision (Manchester et al. 2013). Details

of this calibration are further described in Manchester et al. (2013). All the data

are digitised with 8-bit digitisers. The baseband dataset is 30 TB, with 7.5 GB

for the fold-mode dataset. The fold mode used the psrfits data format, and the

baseband mode used the psrdada format.

2.8.8 Westerbork Synthesis Radio Telescope

WSRT is a 14×25 m dish East-West array, which for pulsar observations is used in

tied-array mode and is phased up before the observations for all observing bands

used. There were no absolute flux calibrations done for these observations. Full

polarization information was stored. Due to the array-nature of the telescope there

is usually very little RFI and therefore any remaining leftover narrow-channel RFI

zapping is done offline using psrchive tools. For these observations we had 11

out of the total 14 dishes available. The WSRT observations made use of PuMa-II

instrument (Karuppusamy et al. 2008), observing at both L-band/1.4 GHz and

350 MHz each with 8 separate bands, which are each either 10 MHz wide (for the

350 MHz observations) or 20 MHz wide (for the 1380 MHz observations). The indi-

vidual bands overlapped by 2.5 MHz of the 10 MHz bandwidth for the 350 MHz ob-

servations. At L-band/1.4 GHz the bands overlapped by 4 MHz out of the 20 MHz

bandwidth to ensure full overlap with the 16 MHz bands at the Effelsberg, Lovell

and Nançay telescopes and allow for coherent addition of the data. For each there
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are 10 s subintegrations stored with 256 bins of 17.9µs each across the profile and

64 channels across each band (which is 10 or 20 MHz depending on the frequency).

The low frequency TOAs were made using psrchive templates, created using the

paas (analytic template) routine based on a high-S/N summation of many other

observations.

2.8.9 Arecibo Observatory and the NRAO Green Bank

Telescope

Both Arecibo and the GBT, as mentioned earlier, used non-folded intensity record-

ing for their non-baseband portions of the observation so that single-pulse data

would be available over the entire span of the observation, without the cost

in bandwidth. Unlike baseband data, no voltage, and thus no electromagnetic

phase information, is present. This observation mode is essentially a pulsar search

mode with coherent de-dispersion, according to the source’s DM. Calibrations at

the start of the observations at both GBT and Arecibo were performed with a

noise diode switched at 25 Hz, including the polarization calibration. Absolute

flux measurements, also including the polarization calibration, were performed on

QSO B1442+101 at the GBT and QSO J1413+1509 at Arecibo. We apply these

calibrations via the Single Axis model using the the psrchive program pac.

Green Bank Telescope

GBT began its observation starting with baseband mode, switching to an hour

of intensity integration observing mode, switching back to baseband mode for

30 min, and then returning to intensity integration mode for the remaining seven
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hours. The two baseband sessions would be simultaneous with other telescopes.

The intensity integration mode had 256× 3.125 MHz frequency channels and had

a time resolution of 5.12µs. The same was planned for the PUPPI backend at

Arecibo. Full polarization information was recorded. Intensity integrations are

effectively search mode but coherently de-dispersed with the known DM. During

the switch from the first baseband time block to the first intensity integration

time block, some time was lost due to a problem with the observing mode on

GUPPI, and so to ensure a safer data rate, the observing mode was switched to

128 × 6.25 MHz channels with a time resolution of 2.56µs. For this reason, the

settings on GUPPI were different from PUPPI. The tradeoff is that with slightly

wider channels in PUPPI, although yielding a better set of phase bins, cannot in

principle excise RFI as efficiently. This interruption and restart caused a small

gap in the data, visible in Figure 3. GBT’s backend employing real-time cyclic

spectroscopy (Jones et al. 2014, in preparation) was also used in parallel during

the folding mode observations, with 65 MHz of bandwidth centered at 1398 MHz.

Arecibo Observatory

Finally, Arecibo joined the observation. Beginning with 30 min of baseband observ-

ing in order to contribute to GiantLEAP, it them switched over to PUPPI intensity

integration mode, a different mode used than that at GBT as just described.
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CHAPTER 3

PULSAR TIMING ERRORS FROM ASYNCHRONOUS

MULTI-FREQUENCY SAMPLING OF DISPERSION MEASURE

VARIATIONS

Free electrons in the interstellar medium cause frequency-dependent delays in

pulse arrival times due to both scattering and dispersion. Multi-frequency mea-

surements are used to estimate and remove dispersion delays. In this paper, we

focus on the effect of any non-simultaneity of multi-frequency observations on

dispersive delay estimation and removal. Interstellar density variations combined

with changes in the line-of-sight from pulsar and observer motions cause dispersion

measure variations with an approximately power-law power spectrum, augmented

in some cases by linear trends. We simulate time series, estimate the magnitude

and statistical properties of timing errors that result from non-simultaneous ob-

servations, and derive prescriptions for data acquisition that are needed in order

to achieve a specified timing precision. For nearby, highly stable pulsars, measure-

ments need to be simultaneous to within about one day in order that the timing

error from asynchronous DM correction is less than about 10 ns. We discuss how

timing precision improves when increasing the number of dual-frequency observa-

tions used in dispersion measure estimation for a given epoch. For a Kolmogorov

wavenumber spectrum, we find about a factor of two improvement in precision

timing when increasing from two to three observations but diminishing returns

thereafter.

Published: Lam, M. T., Cordes, J. M., Chatterjee, S., & Dolch, T. 2015, ApJ, 801, 130
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3.1 Introduction

One of the goals of precision pulsar timing is the detection of low-frequency

(∼ nanohertz) gravitational waves (GWs) from sources at cosmological distances

and possibly from Galactic sources (Detweiler 1979; Hellings & Downs 1983; Cher-

noff 2009; Sesana 2013). Such a detection requires sub-microsecond timing pre-

cision, which is challenging due to a variety of astrophysical and instrumentation

effects that must either be mitigated or fitted for in timing models (e.g. Jenet et

al. 2005). The measurement model for pulse times-of-arrival (TOAs) includes: (i)

deterministic contributions from spin kinematics, orbital motions, and interstellar

propagation delays; (ii) stochastic timing noise from pulsars themselves and from

the interstellar medium; and (iii) measurement noise (Ryba & Taylor 1991; Stairs

et al. 1998; Lorimer & Kramer 2012).

The ionized interstellar medium (ISM) induces various frequency-dependent ef-

fects on TOAs from dispersion, refraction, and scattering (Cordes 2013; Stinebring

2013). Any such effects that are larger than the TOA precision required for GW

detection need to be removed by using multiple-frequency observations. In this

paper, we consider some of the requirements for removing the dispersive delay,

which is the largest frequency-dependent interstellar effect. For a cold, unmagne-

tized plasma, a pulse observed at radio frequency ν is delayed compared to one

at infinite frequency by an amount tDM ∝ DM/ν2, where the dispersion measure

(DM) is the line-of-sight (LOS) integral of the electron density. DM is epoch-

dependent because the LOS changes from motions of the pulsar and the Earth and

because of turbulent and bulk motions within the ISM itself (Phillips & Wolszczan

1991; Cordes & Rickett 1998). Therefore, the dispersion delay must be removed

on an epoch-by-epoch basis. Measurements at two or more frequencies are used to
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estimate DM and then subtract the dispersion delay to obtain infinite-frequency

TOAs that are intended to be devoid of interstellar plasma delays.

Pulsar timing arrays (PTAs) are ensembles of recycled, millisecond pulsars

(MSPs) that can potentially provide high precision TOAs usable for GW detection.

Currently, TOAs are typically obtained in observing campaigns with a roughly

monthly cadence between epochs (Demorest et al. 2013; Hobbs 2013; Kramer &

Champion 2013). However, TOAs may be measured at individual frequencies over

a period of several days around each of these epochs. Variations in DM over

this time range can contaminate the estimated DM and consequently also the

infinite-frequency TOAs. Though variations in DM are small over periods of days

(∆DM/DM ∼ 10−4 − 10−5), they are large enough to add significantly to the

timing error budget.

The North American Nanohertz Observatory for Gravitational Waves

(NANOGrav; McLaughlin 2013) observes MSPs using two facilities, the Arecibo

Observatory and the Green Bank Telescope (GBT). Most pulsars in the PTA are

observed roughly once a month for 20-30 minutes in each of two frequency bands,

chosen on a per-pulsar basis to optimize the precision of the DM correction. The

mechanical agility of the receiver turret at Arecibo allows two frequency bands

to be observed sequentially on the same day. The system at the GBT requires

physical switching between receivers at different foci of the telescope used for each

frequency. This switching must be done on a pulsar-by-pulsar basis and is time-

inefficient. Instead, pulsars are observed at both frequencies on separate days,

resulting in gaps between observations ranging from roughly one day to a week.

These gaps have been mitigated in the NANOGrav processing pipeline by combin-

ing observations in 15-day wide bins and evaluating DM with a piecewise constant
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model (Demorest et al. 2013) that is fitted to the multifrequency data within each

bin under the assumption that DM is constant over 15 days.

There are additional frequency-dependent effects that we do not address in

this work, including refraction and scattering in the ISM (Cordes et al. 1986;

Romani et al. 1986; Rickett 1990; Foster & Cordes 1990) and frequency-dependent

variations of pulse shapes that are intrinsic to each pulsar (Craft 1970; Hankins &

Rickett 1986; Kramer et al. 1999; Hassall et al. 2012; Pennucci et al. 2014). Other

interstellar effects on pulsar timing are also being investigated. Cordes et al. (2016)

analyze the dependence of DM on frequency that results from spatial averaging due

to multipath scattering. In another (Lam et al. 2016b), we diagnose contributions

to DM variations that result from both the change in pulsar distance and from

the change in direction of the LOS. Here we focus on the timing uncertainties that

result specifically from the non-simultaneity of the multi-frequency observations.

Our work gives an exact treatment over the analysis presented in Cordes & Shannon

(2010).

In §2, we present the mathematical framework of the effect of non-simultaneous

observations on DM estimation and the associated timing errors. In §3, we describe

our simulations of DM time series and in §4 we present the results of these sim-

ulations. We conclude in §5 by describing the overall impact on the timing noise

budget and GW sensitivity.

3.2 Timing Errors from DM Mis-estimation

Consider TOA measurements made at two epochs t1 = t and t2 = t+ τ at frequen-

cies ν1 and ν2, respectively. For specificity, we assume ν1 > ν2. A perfect timing
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model would allow the pulse arrival time to be predicted with zero error. However,

timing perturbations are expected from both achromatic effects (e.g. due to GWs

and from errors in the pulsar spin or orbital parameters) and chromatic, interstellar

effects. Chromatic cold plasma effects always decrease with increasing frequency,

so TOAs are referenced to infinite frequency. Defining ∆t∞ as the achromatic,

infinite frequency perturbation, we write the total timing perturbation from both

achromatic effects and dispersion as

∆ti = ∆t∞(ti) +Kν−2
i DM(ti), (3.1)

where the subscript i = 1, 2 denotes the epoch and K ≡ cre/2π ≈

4.149 ms GHz2 pc−1 cm3 is the dispersion constant in observationally convenient

units, with c the speed of light and re the classical electron radius (Lorimer &

Kramer 2012). For simultaneous observations (τ = 0), DM(t1,2) is constant and

∆t∞(t) can be solved for exactly assuming there is no measurement error.

For non-simultaneous observations (τ 6= 0), estimation of DM and correction

to infinite frequency will be in error according to the change in actual DM between

the two epochs. If the difference in TOA offsets is attributed solely to dispersion

delays with a fixed value of DM and if the achromatic offset ∆t∞ is the same at

the two epochs, the estimated DM fluctuation1 at epoch t is

D̂M(t, τ) =
∆t1 −∆t2

K
(
ν−2

1 − ν−2
2

) =
DM(t)− r2DM(t+ τ)

1− r2
. (3.2)

for a frequency ratio r = ν1/ν2. We use the DM increment over the interval

between observations,

∆DM(t, τ) ≡ DM(t)−DM(t+ τ), (3.3)

1To simplify notation, we will assume that the average DM has been removed from all DM
time series.
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to express the difference between true and estimated DM as

δD̂M(t, τ) ≡ DM(t)− D̂M(t, τ) =
r2∆DM(t, τ)

r2 − 1
. (3.4)

When the (mis)estimated DM in Equation (3.2) is used to correct the measured

TOA at epoch t to infinite frequency, the systematic error is

δt̂∞(t, τ) = Kν−2
1 δD̂M(t, τ) (3.5)

The TOA error vanishes for τ = 0. However, it has the curious property of a decline

with increasing r but is asymptotic to a constant value as r goes to infinity. Note

that flipping ν1 and ν2 will cause a change in δD̂M but not δt̂∞.

3.3 DM Variations from ISM Structure

Epoch-dependent DM variations are well known, e.g. for the Crab Pulsar (Isaacman

& Rankin 1977), for B1937+21 (Rawley et al. 1988; Cordes et al. 1990; Kaspi et

al. 1994; Ramachandran et al. 2006), for B1821–24 (Cognard & Lestrade 1997),

and numerous other cases (Phillips & Wolszczan 1991; Backer et al. 1993; You

et al. 2007; Keith et al. 2013). In some cases, DM(t) is consistent with sampling

of stochastic electron-density variations while in others, linear trends in time are

prominent.

A linear trend in DM, modeled as DM(t) = DM0 + (dDM/dt)t, would give a

timing error at frequency ν1 (in GHz)

δt̂∞(t, τ) = Kν−2
1 (dDM/dt)τ

≈ 1.14 ns ν−2
1 τd

(
dDM/dt

10−4 pc cm−3 yr−1

)
, (3.6)
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Figure 3.1: A single realization of a simulated DM time series that results from
density variations along the LOS in a medium with a Kolmogorov wavenumber
spectrum and from changes in the LOS due to relative motions. The power spec-
trum for DM(t) scales as f−γ with γ = 8/3. Top left: DM(t) as a perturbation
added to a mean DM with the left-hand scale in DM units and the right-hand
scale giving the time delay tDM in microseconds for ν = 1 GHz. Top right: Power
spectrum of δDM(t) overplotted with a fitted straight line of slope γ = 8/3. Bot-

tom left: The difference between estimated and true DM, δD̃M(t, τ), for a lag
τ = 1 day between dual-frequency measurements at ν1 = 1.5 and ν2 = 0.8 GHz
with the right-hand scale set for the infinite-frequency TOA perturbation given by
Equation (3.5). Bottom right: Power spectrum of the DM difference overplotted
with a fitted straight line of slope γ = 2/3.

where the approximate value is scaled to a nominal value of dDM/dt and with τ in

days. Measured DM derivatives range from dDM/dt ≈ 10−5 to 10−2 pc cm−3 yr−1,

so timing errors as large as 114 ns will occur for lags of one day for LOSs with

the largest DM derivatives. However, a large linear trend is easy to recognize in

timing data and a wide range of epochs can be used to estimate and remove it. In

the remainder of our analysis, we will therefore ignore the contribution from linear

trends in DM and focus on stochastic variations.

Fluctuations in DM(t) arise from density variations in the ISM that combine
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with the change in LOS from transverse motions of the observer, pulsar, and

medium2 . To describe electron-density variations, we use a power law wavenumber

spectrum with cutoffs q1 and q2 and spectral coefficient C2
n,

Pδne(q) = C2
nq
−β, q1 ≤ q ≤ q2, (3.7)

that depends only on the magnitude of the wavenumber q, which applies to

isotropic density irregularities consistent with many LOSs (see Brisken et al. 2010

for evidence of anisotropic scattering towards B0834+06) . For β > 3 and q1 � q2,

the rms electron density is dominated by the largest scales, 2π/q1. Kolmogorov

turbulence is a benchmark model commonly used to describe fluctuations in the

ISM consistent over many length scales (see Rickett 1990 for an overview). The

Kolmogorov case corresponds to β = 11/3. Example time series are shown in

Fig 3.1.

Density fluctuations impose phase perturbations on electromagnetic waves that

are manifested as variations in DM and as intensity variations (interstellar scin-

tillations, ISS). The phase structure function (SF), Dφ(b) = 〈[φ(x)− φ(x + b)]2〉,

is closely related to measurable ISS quantities (e.g. Rickett 1990). It scales as

Dφ(b) ∝ bβ−2 for spatial separations b intermediate between the smallest and

largest scales in the ISM, 2π/q2 � b � 2π/q1 along with 2 < β < 4, which ap-

pears to be the range of β that best characterizes ISS observations (Bhat et al.

2004; Löhmer et al. 2004). For brevity, we refer to this set of constraints as the

‘scintillation regime.’

Measurements of the ISS timescale ∆tISS in the strong scintillation regime cor-

respond to Dφ(veff⊥∆tISS) = 1 rad2, where veff⊥ is a weighted combination of trans-

verse velocities of the pulsar, observer, and ISM. The phase structure function can

2Linear trends result, in part, from radial motions along the LOS, so transverse motions are
relevant to our discussion.
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be extrapolated to much longer time scales, subject to consistency with the above

criteria on b = veff⊥τ , using (e.g. Foster & Cordes 1990),

Dφ(τ) = (1 rad2)

[
τ

∆tISS(ν)

]β−2

. (3.8)

DM variations are related to phase variations by δDM = −νφ/cre. The time

series δDM(t) is a red noise process with a power-law spectrum that scales as

SDM(f) ∝ f−γ where γ = β − 1 in the scintillation regime. The corresponding

structure function for DM, DDM(τ) =
〈
[∆DM(t, τ)]2

〉
, with ∆DM(t, τ) defined in

Equation (3.3), is

DDM(τ) =
Dφ(veff⊥τ)

(λre)
2 =

ν2

(cre)
2

[
τ

∆tISS(ν)

]β−2

. (3.9)

The scintillation time varies with frequency as ∆tISS ∝ ν2/(β−2), so the quantity

ν2[∆tISS(ν)]−(β−2), and therefore DDM(τ), is independent of frequency.

3.3.1 DM and Timing Errors

The rms estimation error in DM, σδD̂M(τ), follows from Equation (3.4)

σδD̂M(τ) =

∣∣∣∣
r2

r2 − 1

∣∣∣∣D
1/2
DM(τ) ∝ τ (β−2)/2 (3.10)

and the rms error in the infinite-frequency TOA is

σδt̂∞(τ) = Kν−2
1

∣∣∣∣
r2

r2 − 1

∣∣∣∣D
1/2
DM(τ) ∝ τ (β−2)/2. (3.11)

While we consider the case where r > 1, the formalism presented thus far also

holds for r < 1. Again we note that σδD̂M can be reduced by switching ν1 and

ν2, as the lower frequency TOA is more sensitive to changes in DM. However, the

quantity of interest, σδt̂∞ , will remain the same.
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For τ measured in days and the scintillation time ∆tISS evaluated at 1 GHz

referenced to 1000 s, the DM structure function for a Kolmogorov medium is

DDM(τ) =
(
1.57× 10−6 pc cm−3

)2
(

τd
∆tISS(1 GHz)/103 s

)5/3

(3.12)

and so the rms error in the DM estimate is

σδD̂M(τ) = 1.57× 10−6 pc cm−3

∣∣∣∣
r2

r2 − 1

∣∣∣∣
(

τd
∆tISS(1 GHz)/103 s

)5/6

. (3.13)

The rms error in the infinite-frequency TOA is

σδt̂∞(τ) ≈ 6.5 ns

ν2
1

∣∣∣∣
r2

r2 − 1

∣∣∣∣
(

τd
∆tISS(1 GHz)/103 s

)5/6

. (3.14)

In practice, the statistical quantities are estimated through averages over a

data set of length T , which is typically several to many years. Time averaging

does not appear in the analytical results because the statistical quantities have

stationary statistics and we have assumed implicitly that the scintillation time

∆tISS is epoch-dependent. However, scintillation parameters are known to vary on

some LOSs (Johnston et al. 1998; Levin et al. 2016), so a more detailed treatment

would average the structure function over time.

3.3.2 Spectral Properties

As presented, our results do not depend on the length of the overall data span T of

a timing data set. If, hypothetically, the electron density were sampled directly to

form a time series, a steep Kolmogorov-like spectrum would yield a variance that

depends strongly on T . Also, a Fourier-transform based power-spectral estimate

would be heavily biased by spectral leakage.

The lack of dependence of our results on T follows because the observable quan-

tity, DM, is a one-dimensional integral of the electron density and has a temporal
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Figure 3.2: Structure functions for β = 11/3. The solid, thick black line denotes
the structure function (SF) geometrically averaged over 104 realizations and the
dotted lines represent ±1σ deviations from the mean. The SFs for each realization
are shown as thin gray lines. The filled circle at the bottom left and the dashed line
show the SF extrapolated from the scintillation timescale at 1 GHz, ∆tISS,GHz =
1388 s (Keith et al. 2013), to larger lags using Equation (3.12). Note the small
bias between the average SF and the extrapolation at large τ .

power spectrum that is shallower than that of the electron density variations (from

Equation (3.7)), i.e. SDM(f) ∝ f−γ with spectral index γ = β − 1 in the scintilla-

tion regime, as noted above. The DM difference ∆DM(t, τ) that we analyze (e.g.

Equation (3.3)) is similar to a first derivative for small τ . Since the Fourier trans-

form of a first derivative in the time domain multiplies the transformed function

in the frequency domain by one power of f , the power spectrum SDM is multiplied

by f 2 and therefore has a spectral index β−3 that is less than unity for the regime

of interest. For such shallow spectra, the variance should be independent of T

and spectral leakage is negligible. We demonstrate these effects for the anticipated
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Figure 3.3: σδD̂M versus multi-frequency observation offset τ for four values of β
(in the same order as the legend from top to bottom). Error bars are smaller than
the plotted symbols. On the right axis we show σδt̂∞ scaled to 1 GHz. The larger
dots emphasize the value of σδD̂M for the median τ from the distribution shown
in Figure 3.4. Solid lines indicate the analytic function of σδD̂M as per Equation
(3.13). The deviations of the simulation from the analytic form come from biases
in the structure function that scale with increasing β.

spectral cutoffs using simulations in the next section.

The ensemble-average structure function can be written in terms of the power

spectrum for DM,

DDM(τ) = 4

∫
df SDM(f) sin2(πfτ). (3.15)

If the integrand is dominated by frequencies where fτ � 1 for τ ∼ days, then

sin2(πfτ) ∝ (fτ)2 and the structure function has a square-law form in τ .
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Figure 3.4: Histogram of τ for the 10 pulsars observed with GBT in Demorest et
al. (2013). Here we have taken τ to be the absolute value of the time difference
between observations at the two different frequency bands. The median τ = 2
days.

3.4 Simulations

We simulated DM variations consistent with the wavenumber spectrum of Equation

(3.7) by scaling complex white noise in the frequency domain and transforming

to the time domain. Wavenumber cutoffs are outside the range of corresponding

timescales we probe and therefore are not implemented. We used 104 realizations of

DM(t) as a red-noise process over a range of power-law indices γ in the scintillation

regime, including the Kolmogorov value γ = 8/3, each 10 years long with one-day

time resolution. For specificity, we use the scintillation time scale of the MSP

J1909–3744, one of the best timed objects, to set the coefficient of the phase and

DM structure functions. J1909–3744 has a scintillation timescale typical of the
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low-DM MSPs used for GW detection (Demorest et al. 2013; Keith et al. 2013).

Scaled to 1 GHz, it has ∆tISS = 1388 s. We emphasize that no white noise has

been added to model measurement errors, so we effectively assume that DM can

be recovered with no error when τ = 0. We compute time series δD̂M(t, τ) using

Equation (3.4) and a frequency ratio r = 1.5 GHz / 0.8 GHz = 1.875 to match the

center frequencies of observing bands at the GBT.

Figure 3.1 shows representative results for a single realization of DM(t) due

to density variations in a medium with a Kolmogorov spectrum along the LOS

coupled with changes in the LOS from relative motion. The left column shows time

series DM(t) at top after the mean value has been removed and δD̂M(t, τ = 1 day)

at bottom while the right column shows the respective power spectra. Note the

relative flatness of the δDM spectrum with low spectral index γ = 2/3.
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Table 3.1. Predicted Timing Errors for Selected Millisecond Pulsars
σδt̂∞ at 1.5 GHz for β = 11/3, r = 2

Pulsar ∆taISS,GHz [s] σδt̂∞(τ days) [ns] σTOA [ns] Observatory
τ = 1 τ = 3 τ = 5

J0437–4715 1528 3 7 9 38b Parkes
J1713+0747 1755 2 6 8 50c Arecibo/GBT
B1855+09 900 4 11 13 250c Arecibo
J1909–3744 1388 3 7 9 150c GBT
B1937+21 201 15 37 47 35b Parkes

aAll values from Keith et al. (2013).
bMedian TOA uncertainty at 1.5 GHz for 256 MHz bandwidth from Hobbs
(2013).
cMedian TOA uncertainty at 1.5 GHz for 4 MHz bandwidth from Demorest et
al. (2013).

3.5 Results

Structure functions of the closely related quantities, DM and φ, derived from sim-

ulations are shown in Figure 3.2 for multiple realizations with β = 11/3. The

left-hand axis gives DM units and the right-hand axis phase units for ∆tISS mea-

sured at 1 GHz. The extrapolation of the structure functions from the scintillation

time matches simulated results but there is a small bias between the average struc-

ture function and the extrapolation at large lags that are comparable to the length

of the time series; this is a common feature of structure function estimates and

underscores that structure functions need to be interpreted with caution.

We estimate the rms error in DM for an observation gap τ , σδD̂M(τ), by av-

eraging over the 104 realizations. Figure 3.3 shows σδD̂M vs τ for several nominal

values of β near the Kolmogorov case. Even though the analytic value in Equation
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Figure 3.5: Normalized, average autocorrelation functions of δt̂∞ at 1 GHz for
four values of β (in the same order as the legend from top to bottom) and τ = 1
day based on 104 realizations. The normalization factor is the zero lag value
σ2
δt̂∞

= 10−16 σ2
−16 s2, which is the average total variance in each time series,

determined by the scintillation timescale of J1909–3744 and using Equation (3.9).
The particular case of β = 3 shows small Gibbs ringing near the zero lag.

(3.13) matches our simulations well, slight biases will cause mismatches that scale

with increasing β (Rutman 1978; Cordes & Downs 1985). We expect the simple

τβ−2 scaling only in the scintillation regime for 2 < β < 4 but we also need τ to be

at an intermediate value such that f−1
2 � τ � f−1

1 where f1 is the lower frequency

cutoff and f2 is the upper frequency cutoff. The simple τβ−2 scaling is perturbed

once lags become comparable to the data span length. The perturbation is why

we see a slight deviation of the structure function from the simple scaling law for

larger lags. Once β > 4, the structure function will have a square-law form ∝ τ 2

for most lag values. Note that for β < 2 the simple scaling no longer holds.
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Figure 3.6: Analytic evaluation of σδD̂M in Equation (3.10) as a function of ob-
servational frequency ratio r = ν1/ν2 for different pulsar scintillation timescales
∆tISS, assuming a Kolmogorov medium with β = 11/3 and τ = 1 day. The dashed
line shows the value expected for J1909–3744 (Keith et al. 2013).

Figure 3.4 shows a histogram of offsets between 1.5 GHz and 0.8 GHz obser-

vations from GBT observations of 10 pulsars in the NANOGrav five-year data set

(Demorest et al. 2013). The median τ = 2 days implies ∼ 13 ns of timing error

for a pulsar such as J1909–3744 at 1 GHz, a non-negligible fraction of the five-year

weighted timing rms of 38 ns (Demorest et al. 2013).

It is instructive to diagnose the amount of temporal correlation expected in

the time series for δt̂∞. Autocorrelation functions (ACFs) of σδt̂∞ averaged over

realizations are shown in Figure 3.5 for four values of β. The amplitudes of the

ACFs are set by the extrapolation of the DM structure function from the scintil-

lation timescale. The correlation timescale, estimated by the width of the ACF,

increases with β, indicating that red noise is introduced into timing residuals but

89



with a spectral index (i.e. from the power spectrum) that is no more than unity.

Figure 3.6 shows σδD̂M (see Equation (3.13)) as a function of the frequency ratio

r for various scintillation timescales ∆tISS of a given pulsar. An increase in the

frequency ratio r will reduce the amount of error expected from non-simultaneous

observations. The DM and TOA errors asymptote to constant values for large

r though most of the reduction in these errors is obtained for r = 2. These

errors can also be reduced by decreasing the number of days of separation between

observations τ . We re-emphasize that our analysis excludes measurement errors.

In reality, errors in DM estimation from additive noise can be improved by an

increase in r, up to a point dependent on the pulsar’s intrinsic frequency spectrum,

regardless of the systematic error from non-simultaneous observations. Therefore,

timing campaigns need to optimize the two kinds of error with respect to a choice

of r on a pulsar-by-pulsar basis.

We show the analytic values of σδt̂∞ scaled to 1.5 GHz for several of the best-

timed MSPs in Table 1. Errors on the order of 10 ns can be expected at the

level of our target timing precision for GW detection and a significant fraction of

the TOA uncertainty due to radiometer noise even as telescope backends improve.

As a comparison, we list the smallest published median template fitting errors,

σTOA, across bands centered close to 1.5 GHz. Values between observatories scale

approximately as B−1/2 for a bandwidth B, though scintillation can change these

numbers somewhat. We see that for the selected best-timed MSPs, errors from

non-simultaneous observations become non-negligible, even for small values of τ ,

and we should attempt to reduce these errors accordingly. When τ cannot be zero

(e.g. due to telescope constraints), one alternate method of error reduction is to

add additional DM measurements by increasing the number of observing epochs.
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3.6 Extension to N-Point Sampling

We can extend our analysis from two-point sampling of DM to N -point sampling.

For simplicity, we start with the three-point case and assume the three TOA mea-

surements are spaced by τ days of separation, i.e. t1 = t− τ, t2 = t, t3 = t + τ , at

frequencies ν1, ν2, and ν3, respectively. We can define the estimated DM fluctua-

tion between epochs ti and tj to be analogous as previously defined,

D̂Mij(t, τ) =
∆ti −∆tj

K(ν−2
i − ν−2

j )
. (3.16)

If we reference the DM measurements to time t, we find the overall DM estimate

to be

D̂M(t, τ) =
1

2

[
D̂M21(t, τ) + D̂M32(t, τ)

]
, (3.17)

the average of both pairs of measurements.

While the frequency ratio used for D̂M21 and D̂M32 need not be the same, we

will assume ν1 = ν3, so that for rij = νi/νj we have r21 = r23 = r. We can then

write the difference between the true and estimated DM as

δD̂M(t, τ) =
1

2

(
r2

r2 − 1

)
∆(2)DM(t, τ), (3.18)

where the superscript (2) denotes the second increment of DM, defined to be

∆(2)DM(t, τ) ≡ DM(t− τ)− 2DM(t) + DM(t+ τ). (3.19)

The second-order structure function, D
(2)
DM(τ) =

〈[
∆(2)DM(t, τ)

]2〉
, allows us to

write the rms estimation error,

σ
(2)

δD̂M
(τ) =

1

2

∣∣∣∣
r2

r2 − 1

∣∣∣∣
[
D

(2)
DM(τ)

]1/2

(3.20)
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Similarly to the two-point case, the ensemble-average, second-order structure

function can also be written in terms of the power spectrum for DM,

D
(2)
DM(τ) = 16

∫
df SDM(f) sin4(πfτ). (3.21)

Combining Eqs. (3.10) and (3.20) with (3.15) and (3.21), and converting to time

units, we can solve for the ratio of rms estimation errors between the three-point

and two-point sampling cases,

R(τ) =
σ

(2)

δt̂∞
(τ)

σ
(1)

δt̂∞
(τ)

=
1

2

[
D

(2)
DM(τ)

D
(1)
DM(τ)

]1/2

=

[∫
df SDM(f) sin4(πfτ)∫
df SDM(f) sin2(πfτ)

]1/2

. (3.22)

For SDM(f) ∝ f−γ in the scintillation regime 1 < γ < 3, we can solve for this

ratio (now labeled with subscript γ) exactly as Rγ(τ) =
√

1− 2γ−3, for values of

τ that satisfy the inequalities in §5 and as the lower frequency cutoff f1 = 1/T

tends to zero. The Kolmogorov case implies R8/3 ≈ 0.45 and three-point sampling

allows for a greater than factor of two improvement over two-point sampling on

the rms estimation error. Since the second-order structure function removes linear

trends from the time series, whereas the first-order structure function only removes

constant terms, R will decrease even further if DM(t) is slope-dominated as is the

case for even steeper wavenumber spectra.

For an arbitrary number of epochs N used in DM estimation, N -point sampling

will involve an (N -1)-order structure function. The increased cost of observing

time will yield diminishing improvements in the rms error. Following Equation

(3.22) for the reduction in rms error, the integrand in the numerator will contain

increased powers of sin2(N−1)(πfτ). Since the (N -1)-order increment will have a

power spectrum with associated power-law index γ − 2(N − 1) for small values of

fτ � 1, increasing the number of sampling epochs N will cause the spectral index

to become more positive, i.e. the spectral slope will become more positive, and the
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ratio of rms estimation errors between the N -point and the two-point cases will

grow. For a Kolmogorov spectrum, we find that the three-point case results in the

greatest reduction in error. For steeper wavenumber spectra, increased sampling

may become important.

At a telescope like the GBT, the cost of implementing a three-point sampling

scheme involves ∼ 50% added time to observing at one frequency band over each

set of observations, but could yield an important reduction in the timing noise

budget for MSPs like J1713+0747 and J1909–3744. A high-low-high frequency

observing scheme at the GBT will mean both a doubling of higher signal-to-noise

TOAs measured at 1.5 GHz as well as an improvement in DM estimation as r < 1.

As in the two-point case, σδD̂M can be reduced for r < 1 but σt̂∞ cannot. While we

only consider an extension to three-point sampling here, arbitrarily increasing the

number of sampling days should improve the DM estimate, though with a further

increased cost of observing time. The best-case scenario involves the construction

of new high-sensitivity, ultra-wideband receiver systems spanning enough band-

width to allow for accurate enough DM estimation that would eliminate the need

for multi-epoch observations altogether.

3.7 Discussion and Conclusions

Our simulations of non-simultaneous, multi-frequency observations indicate a lower

bound to timing errors on the order of ∼ 10s of nanoseconds for LOSs with scin-

tillation timescales comparable to those of current MSPs sampled in PTAs. The

timing error results from mis-estimation of the DM and any additional measure-

ment errors will increase the DM errors and therefore the TOA uncertainty further.
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For the Kolmogorov case, we find a “pink” noise spectrum for the time series of

DM errors proportional to f−2/3. Any red noise present in timing residuals can

affect the sensitivity of a PTA to GWs. For identical observational parameters in a

timing program, these campaigns will be limited by the induced DM measurement

error largely related to the scintillation timescale for a given pulsar. TOA errors

scale as σδD̂M ∝ ∆t
−5/6
ISS , so timing measurements of pulsars with larger ∆tISS will

have smaller errors.

While we analyze DM variations with power-law wavenumber spectra and

wavenumber cutoffs outside of the corresponding timescales we probe, observed

interstellar DM variations have a minimum characteristic timescale that is deter-

mined by spatial smoothing from scattering and is equal to the refraction timescale

(Cordes & Shannon 2010), tr ∼ 2.4 days (D/Ds)(νGHz/∆νISS,0.01)(∆tISS/1000 s),

where D is the distance to the pulsar, Ds is the distance between the pulsar and

the scattering screen, ∆νISS,0.01 is the scintillation bandwidth is in units of 10 MHz.

For J1909-3744, the scintillation bandwidth is 37 MHz at 1.5 GHz (Keith et al.

2013), which means that the refraction timescale is on the order of a day unless

Ds � D, changing the effective higher wavenumber spectrum cutoff. Because

tr ∝ ν/∆νISS ∝ ν−17/5, the relevant smoothing time is from the higher of a pair of

frequencies. The difference in smoothing at the two frequencies gives rise to other

effects that are discussed in a separate paper (Cordes et al. 2016).

As we discover MSPs farther out in the Galactic plane, we expect an increase

in DM along these LOSs. While MSPs with higher DMs have the potential to be

suitable for inclusion into a PTA, mitigation of increased scattering effects may

prove challenging. We expect that ∆tISS ∝ DM−3/5 for a homogenous, Kolmogorov

medium (e.g. Equation (46) of Cordes & Lazio 1991). With decreasing ∆tISS, more
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stringent constraints on τ will become important for the population of newer, more

distant pulsars.

Equation (3.5) describes the timing error associated with any DM differences

between observations. While we have only considered electron-density variations

from fluctuations in the ISM so far, local variations, such as in the ionosphere,

can also add to the TOA error. Ionospheric changes in electron density correlate

with incident flux from the Sun. Daily changes due to Earth’s rotation, yearly

changes due to Earth’s orbit, and eleven-year cycles due to solar magnetic activity,

are all observed, leading to electron-density variations that can vary by up to

∼ 10−5 pc cm−3, or a TOA uncertainty of ∼ 40 ns at 1 GHz, on any of these

timescales (Huang & Roussel-Dupré 2006). Extreme solar events can produce a

bigger effect. The observed electron density will also increase for LOSs that pass

through large zenith angles. The uncertainty in DM can increase even for small

values of τ if the pulsar is observed at widely different hour angles. Since the

ionosphere varies spatially across the globe as well as temporally, DM differences,

and therefore associated TOA errors, can potentially exist in simultaneous, multi-

frequency observations for separate telescopes at a level larger than the rms error

in Equation (3.13). We suggest that the best practice is for observations to be

spatially coincident as well as simultaneous.

Equation (3.13) can be used to quantify the tolerance level in non-simultaneous

observations for minimal acceptable levels of noise. Observations requiring DM

correction should ensure a frequency ratio r & 2, which is well within the goal

of future wideband timing systems. Timing campaigns should strive for same day

observations, though alternatively, measurements with multiple (> 2) observations

per epoch may partially improve DM estimation and the overall TOA uncertainty.

95



Errors from non-simultaneous multi-frequency measurements may become a large

contribution to the total timing noise budget for pulsars with the highest-timing

precision, for pulsars observed with next-generation telescopes with improved sen-

sitivity, and for PTAs as a whole since sensitivity is often dominated by the best-

timed pulsars in the array.

Work on pulsar timing at Cornell University is supported in part by NSF PIRE

program award number 0968296.
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CHAPTER 4

SYSTEMATIC AND STOCHASTIC VARIATIONS IN PULSAR

DISPERSION MEASURES

We analyze deterministic and random temporal variations in dispersion mea-

sure (DM) from the full three-dimensional velocities of pulsars with respect to the

solar system, combined with electron-density variations on a wide range of length

scales. Previous treatments have largely ignored the pulsar’s changing distance

while favoring interpretations involving the change in sky position from transverse

motion. Linear trends in pulsar DMs seen over 5-10 year timescales may signify

sizable DM gradients in the interstellar medium (ISM) sampled by the changing

direction of the line of sight to the pulsar. We show that motions parallel to the line

of sight can also account for linear trends, for the apparent excess of DM variance

over that extrapolated from scintillation measurements, and for the apparent non-

Kolmogorov scalings of DM structure functions inferred in some cases. Pulsar mo-

tions through atomic gas may produce bow-shock ionized gas that also contributes

to DM variations. We discuss possible causes of periodic or quasi-periodic changes

in DM, including seasonal changes in the ionosphere, annual variation of the so-

lar elongation angle, structure in the heliosphere-ISM boundary, and substructure

in the ISM. We assess the solar cycle’s role on the amplitude of ionospheric and

solar-wind variations. Interstellar refraction can produce cyclic timing variations

from the error in transforming arrival times to the solar system barycenter. We

apply our methods to DM time series and DM gradient measurements in the liter-

ature and assess consistency with a Kolmogorov medium. Finally, we discuss the

Published: Lam, M. T., Cordes, J. M., Chatterjee, S., et al. 2016, ApJ, 821, 66
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implications of DM modeling in precision pulsar timing experiments.

4.1 Introduction

Free electrons in the interstellar medium (ISM) affect pulsar signals by introducing

a frequency-dependent dispersion delay. Dispersion delays need to be removed as

part of search algorithms in pulsar surveys and for precision time-of-arrival (TOA)

measurements that are used for determinations of orbital elements, tests of General

Relativity and other theories of gravity, and detection of long-wavelength gravita-

tional waves. Besides being used for correction, dispersion measures (DMs) are the

the primary means for determining electron column densities on Galactic and, in

some cases, extragalactic lines of sight (LOSs). They serve as important input data

for Galactic models of the electron density and in studies of stochastic variations in

electron density on length scales ∼ 1–100 AU. Dispersion and scattering, a related

frequency-dependent phenomenon due to multi-path propagation, are assumed to

result from cold plasma in the high-frequency limit with negligible contributions

from magnetic fields (see Cordes 2002 or Lorimer & Kramer 2012 for a review).

In this paper, we discuss the inferences that can be made about the ISM using

epoch-dependent DM measurements. We analyze DMs in terms of the full three-

dimensional motions of pulsars, the changes in electron density along the entire

LOS, and the solar system motion through the ISM. The dispersion measure is the

LOS integral

DM(t) =

∫ D(t)

0

ds ne(sn̂(t), t), (4.1)

where D(t) is the pulsar’s distance, ne is the electron density, and n̂(t) is a unit

vector from the observer to the pulsar, with all three quantities generally epoch-
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dependent. Many pulsars have much higher velocities than bulk ISM motion, so

variations in DM are usually dominated by the changing LOS, including both the

distance and direction. Therefore, we generally drop the explicit time dependence

of the electron density, though we will show that this assumption does not hold

within the solar system. While epoch-dependent distances are an obvious conse-

quence of high velocities, most quantitative analyses of DMs have focused on how

the LOS changes from transverse motions.

We report on measured DM variations in the literature in §4.2. In §4.3 we

develop the formalism for DM variations from changing LOS integrals through

electron-filled media and we discuss resulting linear trends in DM time series in

§4.4. We consider the DM struture function (SF) and contributions to it from

stochastic DM variations in §4.5. In §4.6 we discuss the impact of refraction on

timing delays and subsequently the measured DM. We interpret the causes of

linear and non-monotonic trends seen in several pulsars in the literature in §4.7

and periodic DM variations in §4.8. In §5.6, we report the impact of DM variations

on ISM study and on timing precision. We summarize our findings and conclusions

in §6.7. A list of symbols and acronyms used throughout the paper can be found

in Table 4.1.

4.2 Measured DM Variations

Time variability in DM is a well-known phenomenon in pulsar timing. Epoch-

dependent variations were first detected in the Crab Pulsar (Rankin & Roberts

1971). Isaacman & Rankin (1977) measured DM variations in the Crab Pulsar

over a five-year span and suggest that the changes in DM come from within the
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Crab Nebula. Hamilton et al. (1985) found a large gradient in the DM of the Vela

Pulsar over 15 years and attributed it to the LOS changing with the transverse

velocity of the pulsar relative to the supernova remnant. Spatial variations in DM

on sub-parsec scales have also been seen (see Manchester et al. 1991 and Freire et

al. 2001, who discuss changes in DM over different LOSs to pulsars in the center

of the globular cluster 47 Tucanae).

Published time series of DM in the literature show several types of behav-

ior. Some show deterministic linear trends superposed with correlated, stochastic

variations. A few show piecewise linear variations that signify change points in

the time derivative dDM/dt associated with structure in the ISM on scales of 1–

100 AU. Many also show periodic variations, either smoothly sinusoidal or sharp

with distinct features, often with a period of roughly one year. The amplitudes

of these variations have also been seen to change with time. In some cases, both

linear and periodic variations are seen. Others show only correlated, stochastic

variations without an obvious trend.

Phillips & Wolszczan (1991) reported results on five pulsars, four of which show

long-term trends with slopes |dDM/dt| ∼ 10−3 pc cm−3 yr−1 (increasing: PSRs

B0823+26, B0834+06, and B1237+25; decreasing: PSR B0919+06). They assert

that the rms of the DM variations is correlated with the average DM but with

significant scatter about a best fit relation σDM ∝ DM1.3±0.3. A trend of this type

would generally signify that the DM variations are associated with accumulated

effects along the LOS, but the correlation is affected by the long-term trends that

may be due to parallel motion through ionized gas near the pulsars.

Keith et al. (2013, see also You et al. 2007; Petroff et al. 2013) give DM(t) time

series over roughly ∼ 6 yr for 20 millisecond pulsars (MSPs) that are monitored
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Figure 4.1: DM offsets δDM(t) = DM(t) − DMnominal for PSR J1909-
3744, reported in Arzoumanian et al. (2015b, red circles), Keith et al.
(2013, blue squares), Demorest et al. (2013, black triangles). DMnominal =
10.394680, 10.392717, 10.392031 pc cm−3, respectively. The nominal DM differs
due to different methods to account for frequency-dependent pulse shape changes
in the timing models.

in the Parkes Pulsar Timing Array (PPTA) program. Of these, 11 show prevail-

ing trends of increasing DM (PSRs J1024−0719, J1730−2304, J1732−5049, and

J1857+0943) or decreasing DM (PSRs J1045−4509, J1600−3053, J1643−1224,

J1744−1134, J1909−3744, J1939+2134 and J2129−5721). Two others show over-

all trends but with a localized DM ‘event’ that breaks the trend (PSRs J1603−7202

and J1824−2452). The remaining seven objects show non-monotonic variations

with various degrees and timescales of temporal correlation. Reardon et al. (2016)

find evidence for significant linear trends in 13 pulsars and sinusoidal, annual vari-

ations in four pulsars in the extended PPTA data release 1. The approximate

derivative for PSR J1939+2134 (B1937+21) is about half the value of the 20-year

trend reported by Ramachandran et al. (2006) and is consistent with changes in

slope seen in the 20-year time series.
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Demorest et al. (2013) present DM(t) time series for 14 out of 17 pulsars that

were part of the first data release of the North American Nanohertz Observatory

for Gravitational Waves (NANOGrav), based on five years of data. Of these, the

seven objects that overlap with the Keith et al. (2013) sample show consistent

trends. Of the others, several objects show very weak DM variation while two

pulsars, PSRs B1855+09 and J2317+1439, show strong trends superposed with

correlated, stochastic variations.
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Table 4.1. Symbols and Acronyms Used

Symbols Definition Characteristic Units

a Characteristic scale of ISM structure Length
A Spectral coefficient
c Speed of light cm s−1

C Arbitrary amplitude
C1 Constant in uncertainty relation, 2π∆νISSτISS = C1

C2
n Coefficient in electron-density wavenumber spectrum Length−(β+3)

D Earth-Pulsar distance kpc
DM Dispersion Measure pc cm−3

DDM DM structure function [pc cm−3]2

Dt Time structure function s2

Dφ Phase structure function radians2

Ė Pulsar energy loss rate erg s−1

f Spectral frequency Time−1

f1,f2 Lower and upper spectral cutoffs of SDM Time−1

fβ Numerical factor in DM structure function
h Planck constant erg s
hs Height above Earth’s surface km
H Characteristic thickness of ionospheric layer km
k Boltzmann constant erg K−1

K Dispersion constant (≡ cre/2π) ms GHz2 pc−1 cm−3

l Characteristic scale of ISM structure Length
lg,bg Galactic coordinates (longitude, latitude) deg
lHI Mean free path for neutral-hydrogen-ionizing radiation cm
mp Proton mass g
ne Electron density cm−3

nHI Effective hydrogen density cm−3

np Proton density cm−3

Ne Electron column density cm−2

NHI Hydrogen column density cm−2

Pδne Wavenumber spectrum for the electron density Length−3

q Wavenumber Length−1

q1,q2 Lower and upper wavenumber cutoffs of Pδne Length−1
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Table 4.1 (cont’d)

Symbols Definition Characteristic Units

r Position Length
re Classical electron radius cm
rs Bow-shock standoff radius cm
r⊕ Earth-Sun distance AU
RdDM/dt ratio of linear trend to rms linear trend from a

Kolmogorov medium
Rrms ratio of rms DM after and before a linear trend

is removed
s Represents a generic position along the LOS Length
S Power spectrum
SM Scattering Measure kpc m−(β+3)

t Time Time
T Total observing span Time
v Velocity km/s
x Position Length
z Represents a position along the LOS Length
α Arbitrary spectral index
αe,δe Equatorial coordinates (RA, declination) deg
β Exponent in wavenumber spectrum for ne
Γ Gamma function
γ Exponent in power-law of red noise process
∆ Difference/Increment
∆νISS Scintillation bandwidth MHz
∆t Time delay Time
∆tISS Scintillation timescale s
ηs Shock compression factor
θi Incidence angle rad
θr Refraction angle rad
θz Zenith angle deg
λ, ν Electromagnetic wavelength and frequency cm, GHz
λe,βe Ecliptic coordinates (longitude, latitude) deg
λh,βh Heliographic coordinates (longitude, latitude) deg
ρ Mass density g cm−3
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Table 4.1 (cont’d)

Symbols Definition Characteristic Units

σ rms
σHI Photoionoization cross section for neutral hydrogen cm−2

τ Time lag Time
τISS Scattering timescale µs
φ Phase perturbation from refractive index perturbations rad
φg,λg Geographic coordinates (latitude, longitude) deg
ϕ Sinusoidal phase rad
ω Sinusoidal angular frequency Angle/Time

PSR J1909−3744 exemplifies several types of variations in DM that moti-

vate our study. Demorest et al. (2013) see a monotonic decrease in DM over

5 years. Keith et al. (2013) also note the linearity of DM(t), with a change in

1.85 × 10−3 pc cm−3 over 6 years, and find that the SF of their time series ex-

ceeds, for every lag, the SF prediction from dynamic spectrum estimates by a

factor of ∼ 5. They suggest the SF excess implies an electron-density wavenum-

ber spectrum steeper than that of a turbulent, Kolmogorov medium. Recently,

the NANOGrav Nine-Year Data Release (Arzoumanian et al. 2015b; hereafter

NG9) showed that the decreasing trend continued, spanning all nine years of

data, along with a superposed annual variation. Figure 4.1 shows the DM off-

sets δDM(t) = DM(t) − DMnominal as presented by the three data sets, where

DMnominal = 10.394680 pc cm−3 for Demorest et al. (2013), 10.392717 pc cm−3 for

Keith et al. (2013), and 10.392031 pc cm−3 for NG9. Differences in the absolute

DM are caused by different methods of frequency-dependent pulse shape variation

removal from the TOAs. An in-depth analysis of the DM variations of all of the

MSPs in NG9 will be presented in the future (M. L. Jones et al. in preparation).

Fonseca et al. (2014) present DM(t) for the relativistic binary PSR B1534+12
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and fit for derivatives dDM/dt in five separate time blocks. The overall

trend is a decrease with time that is interrupted by episodic flattenings or in-

creases in DM. The variation of DM(t) from 1990 to 2012 is dominated by

five piecewise linear segments lasting three to five years with slopes dDM/dt =

{−3.16,−0.43,−2.94, 10.1,−0.1} × 10−4 pc cm−3 yr−1. The DM SF scales as

τ 3.70±0.04 for lags between 70 and 90 days, consistent with a Kolmogorov scaling.

The best-fit SF implies a diffractive scintillation timescale of ∆tISS = 3.0±0.8 min

at 0.43 GHz, considerably smaller than the range 11 ± 3 min directly measured

by Bogdanov et al. (2002) from 2D autocorrelation functions of dynamic spectra.

While epoch-dependent scintillation may play a role in this difference, the shorter

time scale inferred from the SF fit is consistent with the presence of contamination

from non-Kolmogorov fluctuations on length scales relevant to the DM variations.

4.3 Line of Sight Integrals

In the following, we will develop the mathematical framework for variations in DM

that we will use in following sections. Consider changes in DM that result from

the relative motion of the pulsar and observer, which changes both the distance

to the pulsar and the direction of the LOS, as shown in Figure 4.2. For an initial

pulsar position xp0 and Earth position xe0, the initial distance D0 = |xp0 − xe0|

increases (to first order in time) as

D(t) ≈ D0 + (vp − ve) · n̂0 t ≡ D0 + ∆v‖t, (4.2)

where vp and ve are the pulsar and Earth velocity vectors, respectively, n̂0 =

∆x0/D0 = (xp0 − xe0)/D0 is the unit vector to the pulsar at t = 0, and ∆v‖ is

the apparent velocity of the pulsar parallel to the LOS. The next, quadratic term,
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(∆v⊥t)2/2D0, where ∆v⊥ is the apparent velocity of the pulsar perpendicular to

the LOS, is a factor ∆v⊥t/D0 ∼ 10−6 times smaller than the linear term for typical

parameters of ∆v ∼ 100 km s−1 (Faucher-Giguère & Kaspi 2006), time span T ∼ 10

years, and D ∼ 1 kpc (Cordes & Lazio 2002), and therefore can be ignored in

calculating the distance. Conversely, the change in direction is determined by the

transverse velocity

n̂(t) = n̂0 +D−1
0 ∆v⊥t. (4.3)

Let the initial LOS at t = 0 be the z-axis and integrate over locations x0(z) = zẑ

to get the initial DM,

DM0 =

∫ zp0

ze0

dz ne(x0(z)). (4.4)

For t > 0 we integrate over a new interval [ze, zp] where

ze = ze0 + ve‖ t, zp = zp0 + vp‖ t. (4.5)

The sampled locations are now x(z, t) = r(z, t) + zẑ where r(z, t) is transverse to

ẑ,

r(z, t) = veff⊥(z)t (4.6)

veff⊥(z) = ve⊥ + (vp⊥ − ve⊥)

(
z − ze
zp − ze

)
. (4.7)

The locations ze and zp are evaluated at time t and it is assumed that there is no

significant acceleration correction over times of interest (weeks to decades). The

effective transverse velocity, veff⊥ , is a weighted sum of the pulsar’s and Earth’s

velocities. It is consistent with that given in Eq. 3 of Cordes & Rickett (1998),

which also includes a term −Vm for the velocity of the medium, and also with

Eq. C15 of Gupta et al. (1994).
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The simplest approach is to evaluate the electron density for the t > 0 LOS in

terms of its values for the initial LOS,

ne(x(z, t)) = ne(x0(z)) + [ne(x(z, t))− ne(x0(z))]

≡ ne(x0(z)) + ∆ne(x(z, t)). (4.8)

The DM integral over [ze, zp] can be expanded into integrals over the three intervals

[ze0 , zp], [ze0 , ze], and [zp0 , zp] to get

DM(t) =

∫ zp

ze

dz ne(x(z, t))

=

∫ zp0

ze0

dz ne(x(z, t)) +

∫ zp

zp0

dz ne(x(z, t))

−
∫ ze

ze0

dz ne(x(z, t)). (4.9)

For the first integral we expand the integrand using Eq. 4.8 to get

∫ zp0

ze0

dz ne(x(z, t)) = DM0+

∫ zp0

ze0

dz∆ne(x(z, t)). (4.10)

This gives

DM(t) = DM0+

∫ zp0

ze0

dz∆ne(x(z, t))

+

∫ zp

zp0

dz ne(x(z, t))−
∫ ze

ze0

dz ne(x(z, t)). (4.11)

DM0 is the DM measured at time t = 0, the first integral is the change in DM

over the initial LOS (density fluctuation term), the second integral is the change

in DM due to the pulsar’s motion through its local environment (pulsar term), and

the third integral is the change in DM due to the Earth/Solar System’s motion

through its local environment (Earth term).

The integrand ∆ne(x(z, t)) of the density fluctuation term needs to be con-

sidered only if electron density variations are significant on length scales of order
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the offset between the LOS at t and the initial LOS at t = 0, i.e., |∆x(z, t)| =

|x(z, t)− x0(z)| � D0. For example, this offset ` ∼ 20 AU veff⊥100tyr for a fiducial

velocity of 100 km s−1 and a year-long time span. All evidence from the last few

decades of interstellar scintillation studies are consistent with there being varia-

tions on these (multiples of AU) and smaller scales (Coles et al. 1987; Armstrong

et al. 1995; Rickett et al. 2000). However, the detailed spectrum of variations on

AU scales is not well known and appears to differ between the LOSs to different

pulsars (Stinebring et al. 2000).

The pulsar and Earth terms in Eq. 4.11 are over small intervals zp− zp0 = vp‖t

and ze−ze0 = ve‖t so, to first order in these intervals, the two terms give ne(xp)vp‖t

and ne(xe)ve‖t, where ne(xp) and ne(xe) are averages over the respective intervals

centered on xp = xp0 + (vp‖t/2)n̂(t) and xe = xe0 + (ve‖t/2)n̂(t), respectively.

Unless there are large variations over the intervals, these average locations can

be taken as the initial ones at t = 0. The DM variations from these two terms

are a simple consequence of the change in pulsar distance due to parallel motion

because, as noted earlier, the transverse velocities enter only to second order and

so are negligible in these terms.

We assume that true temporal changes in electron density are negligible. This

is often a good assumption because turbulent ISM velocities (of order a few km/s)

are typically much smaller than pulsar velocities (Faucher-Giguère & Kaspi 2006;

Frisch et al. 2011). For slow pulsars and fast plasma screens (e.g., shock fronts), the

ISM velocity needs to be included and adds a term −vm(z) (with m for medium)

to the effective velocity defined in Eq. 4.7. For a purely turbulent medium, the

velocity is stochastic and would depend on wavenumber. However, a moving screen

is easily described with a translational velocity.
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Figure 4.2: Geometry showing change in LOS due to motion of pulsar p and
observer o. DM is calculated by integrating along the z-axis taking into account
the change in LOS.

4.4 Linear Trends in DM

For a perfectly uniform medium with density ne the difference ∆ne(x(z, t)) vanishes

and the total DM (found by combining Eqs. 4.5 and 4.11) is

DM(t) = DM0 + ne(vp‖ − ve‖)t, (4.12)

giving a time derivative

dDM

dt
= ne(vp‖ − ve‖)

≈ 10−5 v100ne0.1 pc cm−3 yr−1, (4.13)

where the approximate estimate uses a fiducial relative velocity of 100 km s−1 and

an electron density of 0.1 cm−3 (Frisch et al. 2011). Observed DM derivatives

range from approximately the nominal value in Eq. 4.13 up to values as large

as 0.01 pc cm−3 yr−1, indicating that if the changing distance is the primary

contribution to the observed trend, that the product v100ne0.1 is as large as 1000.
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A slightly different form results for a medium with changes in density only on

large length scales � |vp‖ − ve‖|t,

dDM

dt
= ne(xp0)vp‖ − ne(xe0)ve‖ , (4.14)

which indicates that changes in DM are affected by the local electron density

on both ends of the LOS. For similar electron densities at the two locations, we

expect the pulsar term to dominate because pulsar velocities are typically much

larger than the Earth’s orbital motion and the Sun’s peculiar motion through the

Local Interstellar Cloud (LIC), the latter about 28 km s−1 (Faucher-Giguère &

Kaspi 2006; Frisch et al. 2011). There will be exceptions, of course, for pulsars

with low velocities or with small parallel velocity components.

The LIC is about 2.5 pc across and has an internal gas density of ≈ 0.1 −

0.2 cm−3 at a temperature of 7000 K (Frisch et al. 2011). Assuming a completely

ionized, uniform medium, the total DM through the cloud is at most DMLIC ≈

0.5 pc cm−3 and the maximum derivative is

dDMLIC

dt
≈ 5.7× 10−6 pc cm−3 yr−1. (4.15)

The Earth’s orbital motion is not relevant for the calculation of DM varia-

tions due to parallel motions because the Earth resides inside the heliosphere. A

simplified form of Eq. 4.11 is therefore

DM(t) = DM0 +
[
ne(xp0)vp‖ − ne(xe0)ve‖

]
t+

∫ zp0

ze0

dz∆ne(x(z, t)). (4.16)

However, the Earth’s motion will matter when we later consider the interplanetary

medium. In addition, the Earth term raises the interesting possibility that DM

variations are partially correlated between different LOSs with an angular depen-

dence that depends on the local ISM and on the direction of the Sun’s peculiar

velocity.
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While linear trends in DM(t) have been recognized for many years, it is not

a priori obvious whether they should be associated with the explictly linear term

or with the density fluctuation term, which may quantify gradients transverse to

the LOS. Some pulsars will show DM(t) variations where parallel motion is more

important than transverse motion, and vice versa. The two kinds of variations

may be distinguishable. If gradients and transverse motion are dominant, there

should also be epoch-dependent refraction and flux-density variations on the same

timescales. However, parallel-motion effects need not be accompanied by strong

modulations of scintillation parameters and flux densities because the structure

of the ISM along the LOS will remain the same. We note that DM(t) will vary

with time from parallel motion alone regardless of whether the ISM is uniform

or not; no gradients in electron density ne are needed. The variations will be

monotonically increasing or decreasing with time if there is no transverse motion

(of the pulsar, solar system, or medium). However, DM variations from transverse

motion alone require gradients in ne that have components transverse to the LOS,

i.e., ∇ne · r(z, t) 6= 0. Any gradients in ne will generally be manifested from both

parallel and transverse motion. DM variations from parallel motion do not depend

on the pulsar distance but the transverse change in LOS depends on location along

the LOS, therefore influencing the observable effect from a transverse gradient.

When the Earth’s orbital velocity is important, such as for an MSP with low

translational velocity, the contribution to DM(t) depends on ∇ne · veff⊥(z, t) and

therefore will show a sinusoidal variation.
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4.5 Stochastic Variations in DM

Electron-density variations in the ISM can cause fluctuations in DM(t) that com-

bine with the DM variations previously discussed. Many DM(t) time series have

been shown to be consistent with purely stochastic variations in electron density;

a list of references for epoch-dependent DM variations can be found in Lam et al.

(2015). Following their treatment, we can describe the stochastic variations by a

power-law wavenumber spectrum

Pδne(q) = C2
nq
−β, q1 ≤ q ≤ q2, (4.17)

where the wavenumber cutoffs, related to the inner and outer physical scales `2 and

`1, respectively, are q1 = 2π/`1 and q2 = 2π/`2 and C2
n is the spectral coefficient.

Eq. 4.17 assumes that the scattering irregularities are isotropic and the spectrum

depends only on the magnitude of the wavenumber. Evidence for anisotropic

scattering exists along certain LOSs (e.g., Brisken et al. 2010) but the analysis is

accordingly more tedious. The rms electron density is dominated by the largest

scales (∼ 1− 100 pc except in dense, compact regions) for β > 3 and q1 � q2. For

a Kolmogorov medium, β = 11/3 (Rickett 1990).

One useful statistic for quantifying DM variations is the DM structure function

(SF),

DDM(τ) ≡
〈
[DM(t+ τ)−DM(t)]2

〉
=
〈∣∣∆(1)DM(t, τ)

∣∣2
〉
, (4.18)

where ∆(1)DM(t, τ) is the first-order DM increment, because it removes any con-

stant term and is closely related to the spectral index of the wavenumber spectrum

when β is in the scintillation regime (for wavenumbers q1 � q � q2 and 2 < β < 4;

Lam et al. 2015). We can relate it to similar SFs found in the literature for the elec-

tromagnetic phase perturbation imposed by the interstellar plasma φ and for the
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resulting dispersive time delay, t. These are respectively φ = −creν−1DM, where

re is the classical electron radius, and t = dφ/2πdν = Kν−2DM with K ≡ cre/2π.

We thus have

Dt(τ) = K2ν−4DDM(τ) = (2πν)−2Dφ(τ). (4.19)

The DM SF includes the effects of the systematic DM term due to the change in

distance as well as the term involving the integrated difference ∆ne(x(t)). Small

scale, discrete structures on AU scales can contribute to ∆ne(x(t)) along with

stochastic variations.

Together, discrete structures and the changing distance will produce contribu-

tions to the SF that are quadratic in τ and will contaminate the SF of the stochastic

variations. A general feature of SFs is that they are quadratic when the lag τ is

smaller than any characteristic timescale in the time series. So for structures in

the ISM with scale sizes ` of tens of AU that have characteristic crossing times

`/veff ∼ many years, quadratic SFs will be seen for lags of a few years or less. For

the case where only the distance-change term is relevant, DM(t+ τ)−DM(t) ∝ τ ,

it is easy to show that the SF is

DDM(τ) =
[
ne(xp0)vp‖ − ne(xe0)ve‖

]2

τ 2. (4.20)

More generally, if DM variations are dominated by a linear gradient dDM/dt, the

SF is

D
(lin)
DM (τ) =

[
dDM

dt

]2

τ 2. (4.21)

The SF of purely periodic variations in DM of the form DM(t) = C cos(ωt + ϕ)

can easily be calculated as

D
(per)
DM (τ) = C2 [1− cos(ωτ)] . (4.22)
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While the DM SF is typically calculated with time lags of days to years, it

can be related to the implied phase SF on the diffractive interstellar scintillation

(DISS) timescale of minutes to hours. To do so, we use Eq. 4.19 along with the

fact that the scintillation timescale ∆tISS corresponds to Dφ(∆tISS) ≡ 1 rad2. The

corresponding DM SF value (using λ = c/ν) is

DDM(∆tISS) = (ν/2πK)2Dφ(∆tISS) = (λre)
−2

= 1.47× 10−15ν2
GHz (pc cm−3)2 (4.23)

Similarly

Dt(∆tISS) = (2πν)−2 = 0.0253ν−2
GHz ns2. (4.24)

The SF can be extrapolated to larger time lags, and for the stochastic, Kolmogorov

medium where β = 11/3,

D
(sto)
DM (τ) = (λre)

−2 (τ/∆tISS)5/3 (4.25)

D
(sto)
t (τ) = (2πν)−2 (τ/∆tISS)5/3 . (4.26)

In general, the total DM SF can be written as the sum of the contribution from

the systematic term and from the extrapolated stochastic term,

D
(tot)
DM (τ) = D

(sys)
DM (τ) +D

(sto)
DM (τ). (4.27)

However, the systematic term cannot be separated as it will contain cross-terms

if two or more components (e.g., linear plus periodic) are added together. For

cases where the systematic term is significant, the time series for DM could be de-

trended before calculating the SF, though de-trending can remove variance due to

the electron density wavenumber spectrum. Equivalent to other discussions in the

literature, when a power-law wavenumber spectrum dominates electron-density
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variations the SF is essentially the SF of the density fluctuation term given in

Eq. 4.11.

We can relate the the DM SF from the random component to the rms of the

DM variations. For a power-law wavenumber spectrum, the DM SF is

DDM(τ) = fβ

∫ zp0

ze0

dzC2
n(z) [veff⊥(z)τ ]β−2 , (4.28)

where (Cordes & Rickett 1998, Eq. B6)

fβ =
8π2

(β − 2)2β−2

Γ(2− β/2)

Γ(β/2)
. (4.29)

The numerical factor is f11/3 = 88.3 for a Kolmogorov wavenumber spectrum.

Using the effective velocity of Eq. 4.7 evaluated for the case where it is dominated

by the pulsar velocity and assuming C2
n is constant along the LOS, the DM SF

yields an rms DM on a timescale τ for a Kolmogorov medium

σDM(τ) =

[
1

2
DDM(τ)

]1/2

=

(√
3f11/3

4

)
SM1/2 (vp⊥τ)5/6

= 1.9× 10−4 pc cm−3

(
SM

10−4 kpc m−20/3

)1/2(
vp⊥100τyr

)5/6
, (4.30)

where the scattering measure (SM) is the LOS integral (Cordes & Lazio 1991)

SM =

∫ D

0

ds C2
n(s). (4.31)

When the effective velocity is instead dominated by the Earth’s velocity, as can

be the case for some slow moving MSPs, the same expression applies but with vp⊥

replaced by ve⊥ . If both velocities are important, the integral in Eq. 4.28 needs to

be evaluated explicitly.
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Following Eq. 4.30, an estimate of the rms DM gradient is

σdDM/dt ≈
σDM(τ)

τ

= 1.9× 10−4 pc cm−3 yr−1

(
SM

10−4 kpc m−20/3

)1/2

vp⊥
5/6
100τ

−1/6
yr . (4.32)

The rms can be evaluated by using scintillation measurements to evaluate the

scattering measure SM (Cordes & Lazio 1991) and by using proper motion mea-

surements with distance estimates (from parallaxes or from DM and a Galactic

electron-density model) to estimate the pulsar velocity.

One approach for comparing measured DM gradients with those expected from

a Kolmogorov medium with no change in distance is to calculate the signal-to-

noise-like ratio

RdDM/dt =
|dDM/dt|
σdDM/dt

. (4.33)

When the gradient exceeds the prediction for a Kolmogorov model by a large fac-

tor, one of two interpretations may apply. First, the medium may not have a

Kolmogorov spectrum that encompasses both the small length scales that cause

scintillation and the large 1–100 AU scales associated with DM variations. Alter-

nately, the excess derivative amplitudes can be caused by the changing pulsar dis-

tance as described above. Identifying which of these interpretations apply requires

consideration of other factors. Transverse motions of the pulsar that cause the

LOS to sample different irregularities will yield DM derivatives that are correlated

with the absolute DM value whereas parallel motions that change the distance will

not.

Another approach compares the rms of the DM time series before and after the

removal of a linear trend. Letting σ2
tot = σ2

sto + σ2
lin be the total variance of the

time series, we can define the ratio of rms after the removal of a linear trend to
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the rms before the removal as

Rrms =
(σ2

tot − σ̂2
lin)

1/2

σtot

(4.34)

where σ̂2
lin is the estimated variance of the linear trend. This definition restricts

0 ≤ Rrms ≤ 1. Realizations of DM time series will appear more linear when

the wavenumber spectral index β is large and the removal of the best-fit line for

the time series will absorb low-frequency power from the frequency spectrum of

DM. Conversely, when β is low, the time series will appear closer to a white noise

process, and the removal of a best-fit line will not change the resultant time series

greatly.

We can solve for how σsto and σlin scale with observing time span T . Let

the stochastic DM variation be a power spectrum SDM(f) = Af−γ, where A is a

spectral coefficient related to ∆tISS and γ = β − 1 (see Appendix 4.12.1 for more

details). The variance is then

σ2
sto =

∫ f2

f1

SDM(f)df =

∫ f2

f1

Af−γdf, (4.35)

where f1 and f2 are the low- and high-frequency cutoffs, respectively, related to

the wavenumber cutoffs q1 and q2. In the scintillation regime with 1 < γ < 3,

assuming f1 � 1/T � f2, the integral can be approximated as

σ2
sto ≈

A

γ − 1
T γ−1, (4.36)

which for the Kolmogorov case implies σsto ∝ T 5/6. The variance from a determin-

istic, linear trend is

σ2
lin =

1

T

∫ T/2

−T/2

(
dDM

dt
t

)2

dt

=
1

12

(
dDM

dt

)2

T 2. (4.37)
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Therefore σlin ∝ T and if a deterministic, linear trend is present, σlin will increase

over σsto and Rrms will increase for longer observing timespans.

In addition to single, linear trends in DM, we can test for discrete changes in

underlying linear trends in DM, such as from an ionizing bow shock (see § 4.7.2),

versus stochastic changes from the turbulent medium by calculating the second-

order increments of DM(t), ∆(2)DM(t, τ) = DM(t − τ) − 2DM(t) + DM(t + τ),

which remove linear components and relate to the curvature of the time series.

The increments at a given τ will have a Gaussian distribution and deviations

from this distribution will be indicative of structure other than from a turbulent

medium. We can determine the variance in the distribution of increments at a

given τ , σ2
∆(2)DM

(τ), from the second-order DM SF, which can be written as

D
(2)
DM(τ) =

〈∣∣∆(2)DM(t, τ)
∣∣2
〉

(4.38)

For a Kolmogorov wavenumber spectrum, the second-order SF is related to the

first-order SF, as well as the variance in the second-order increments, by

D
(2)
DM(τ) = σ2

∆(2)DM(τ) ≈ 0.8252D
(1)
DM(τ). (4.39)

The derivation is provided in Appendix 4.12.1. We can use Eqs. 4.25 and 4.39

to analytically estimate the rms of the second-order DM increments given ∆tISS,

which we use to analyze the slope changes in DM(t) for PSR B1534+12 in §4.7.

4.6 Refraction Effects and Timing

Refraction of a radio point source by a high-density region in the ISM has been

known to cause irregularities in electron-density time series. See Clegg et al. (1998)

and references therein for the case of a Gaussian plasma lens, to be considered
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shortly, and Coles et al. (2015) for recent evidence of scattering events in pulsar

timing data. One of the timing delays associated with refraction scale as ν−2 and

is therefore degenerate with the dispersion delay, causing changes in the estimated

DM. Consider a single ionized cloud that has characteristic scales a‖ parallel and a⊥

transverse to the LOS and with a column density DMc = Nec ∼ neca‖ through the

cloud along the LOS. The maximum phase change due to the clump is |φc| ∼ λreNec

and the dispersion delay is

∆tDMc =
φc

2πν
=
λ2reNec

2πc
. (4.40)

The phase gradient across the LOS is then |∇⊥φ| ∼ λreNec/a⊥ and the refraction

angle is

θrc =
λ|∇⊥φ|

2π
∼ λ2reNec

2πa⊥
∼ c∆tDMc

a⊥
. (4.41)

There are two time delays introduced by refraction into barycentric arrival times.

The first is associated with the translation of topocentric TOAs by the propagation

delay from the geocenter to the solar system barycenter. The direction to the

pulsar is a key part of the translation, and refraction will induce an error in the

barycentered arrival times. Chromatic refraction causes the angle of arrival to

differ from an assumed direction, implying a delay (Foster & Cordes 1990) that

varies sinusoidally with an annual period and an amplitude

∆tbaryc ∼
r⊕θrc
c
∼
(
r⊕
a⊥

)
∆tDMc ∼

∆tDMc

a⊥AU

, (4.42)

where r⊕ = 1 AU. The second delay is the geometric increase in propagation path

that is roughly

∆tgeoc ∼
Dθ2

rc

2c
∼ cD(∆tDMc)

2

2a⊥2
∼ cD

2r2
⊕

(
∆tDMc

a⊥AU

)2

. (4.43)

For a single clump, Eqs. 4.42 and 4.43 indicate that barycentric delay ∆tbaryc and

geometric delay ∆tgeoc are linear and quadratic, respectively, in the dispersion
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Figure 4.3: Refraction delays plotted against DM delay from a single cloud at a
distance D = 1 kpc. (Top) The barycentric delay for two clump scale sizes, as
labeled. (Bottom) The geometric delay for the same two clump sizes.

delay, ∆tDMc (∝ ν−2 and ν−4, respectively). The barycentric and geometric delays

are comparable for pulsars within about 1 kpc because θr ∼ 1 mas andDθr ∼ 1 AU,

though there are wide variations of these values.

Numerically, the refraction and dispersion delays are comparable for nominal

parameter values but any one of the three delays can dominate the the other two

for reasonable distances and transverse scale lengths,

∆tbaryc ∼ 1 µs

(
∆tDMc,µs

a⊥AU

)
, (4.44)

and

∆tgeoc ∼ 0.2 µsDkpc

(
∆tDMc,µs

a⊥AU

)2

. (4.45)

Figure 4.3 shows ∆tbaryc and ∆tgeoc plotted against ∆tDMc for D = 1 kpc and
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for two transverse scale lengths (a⊥ = 1 and 10 AU).

A final consideration is multiple imaging. Clegg et al. (1998) analyze flux

variations and caustics for an interstellar Gaussian plasma lens, i.e., a cloud with a

Gaussian electron density profile. The focal distance Df of a clump is the minimum

distance from the clump at which rays can cross,

Df ∼
a⊥
θrc
∼ a⊥2

c∆tDMc

∼ 2.4 kpc a⊥
2
AU∆tDMc,µs. (4.46)

We therefore do not expect ray crossing and multiple images from nearby pulsars

unless a clump is small and dense.

We can solve for the three time delays associated with refraction (dispersion,

barycentric, geometric) by considering rays traveling through a Gaussian lens in

the ISM. Following the treatment in Clegg et al. (1998), for a thin-screen approx-

imation of the lens, the column density in two-dimensions can be written as

Nec(x) = N0 exp
(
−[|x− xc|/a]2

)
, (4.47)

where N0 is the maximum central column density and a is the characteristic size

of the lens. The screen phase φ is related to the electron density by

φ(x) = −λre
∫

screen

dz ne(x, z) ≡ −λreNe(x). (4.48)

For the Gaussian cloud, we therefore have

φc(x) = −λreN0 exp
(
−[|x− xc|/a]2

)
. (4.49)

Using Eq. 4.41, the refraction angle is

θrc(x) =
λ2reN0

πa2
x exp

(
−[|x− xc|/a]2

)
, (4.50)

In general, the location of the incident ray paths on the Earth at location xe

intersecting the cloud at xc from a pulsar at xp must satisfy the equation

xe = xc − [θrc(xc) + θi(xp)]D (4.51)
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Figure 4.4: Analysis of DM time series and SFs for PSR J1909−3744. Top left:
DM offsets δDM(t) reported in Arzoumanian et al. (2015b, red circles), Keith et
al. (2013, blue squares), Demorest et al. (2013, black triangles), see Figure 4.1 for
more details. Top right: DM SFs for the three time series in the top left (with
matching colors). The solid black line indicates the value of the SF inferred from
the scintillation timescale and assuming DM variations only from a Kolmogorov
wavenumber spectrum for the ISM. The light gray, hatched region shows nominal
errors on the inferred SF from a multiplicative factor of

√
2 error on the scintillation

timescale. The dark gray region indicates the ±1σ deviations from the mean SF for
simulations of DM variations over nine years that include a Kolmogorov medium,
a linear component from motion parallel to the LOS, a sinusoidal component, and
measurement errors (see text for more information). Bottom left: DM offsets of
the time series in the top left after a linear trend has been removed. Bottom right:
DM SFs for the three time series in the bottom left. The gray region indicates
the same as in the top right except that the best-fit linear trend has been removed
from the simulated time series before calculating the SF.

where θi is the incidence angle of the pulsar rays on the screen.
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Figure 4.5: Analysis of DM time series and SFs for PSR B1937+21. The format
is the same as in Figure 4.4. The dots are from Kaspi et al. (1994) while the
crosses and diamonds are from Ramachandran et al. (2006) for the Green Bank
(GB) 140-foot telescope and Arecibo Observatory (AO), respectively.

4.7 Interpretation of Observed Pulsar Phenomena

4.7.1 Linear Trends Versus Stochastic Variations

We look at several examples of deterministic, linear DM trends seen in the literature

below. To test our interpretations, we compare the time series against simulated

DM variations with a Kolmogorov wavenumber spectral index following the same

procedure as described in Lam et al. (2015) by transforming scaled, complex white

noise in the frequency domain to the time domain. The power spectrum of the
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Figure 4.6: Analysis of DM time series and SFs for PSR B1821−24. The format is
the same as in Figure 4.4. The squares show measurements from the Green Bank
(GB) 140-foot telescope (Backer et al. 1993) while dots show measurements from
the Nançay radio telescope (NCY) (Cognard & Lestrade 1997).

electron density variations, SDM(f) ∝ f−γ, has a spectral index γ = β − 1 = 8/3

for the Kolmogorov case. The scalings of the coefficient of the power spectrum are

consistent with the extrapolation of the SF DDM by the scintillation timescale (see

Eq. 4.25).

PSR J1909−3744

As described in §2, the DM time series shows a decreasing, linear trend (Demorest

et al. 2013; Keith et al. 2013; Arzoumanian et al. 2015b) over a ∼ 9-year timespan.
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Keith et al. (2013) compare SFs of dispersion delay Dt on long timescales with

the extrapolations from the DISS timescale assuming a Kolmogorov spectrum. In

several cases they find that the actual measurements exceed the extrapolation by

large factors and that the slope of Dt is larger than the Kolmogorov slope of 5/3.

They conclude that the wavenumber spectrum is steeper than Kolmogorov. In the

case of PSR J1909−3744, they find that the value of the DM SF for measured lags

is about a factor of five higher than the extrapolation from the DISS timescale

using a Kolmogorov scaling.

We present an alternative interpretation that recognizes that the contribution

to DM(t) from Kolmogorov fluctuations combined with transverse motion of the

LOS can be contaminated by the changing distance between pulsar and Earth

from parallel motion as discussed previously (see Eq. 4.27). This contamination

contributes a term to the SFs that scales as τ 2, i.e., steeper than Kolmogorov, and

that can dominate the overall amplitude of the SFs.

The top left panel of Figure 4.4 is identical to Figure 4.1 and shows the time

series of the DM offsets, δDM(t), as reported in Demorest et al. (2013), Keith et al.

(2013), and Arzoumanian et al. (2015b, NG9). Again, the total measured DM is

found by adding a constant DMnominal to the DM offsets, though the values will still

differ due to other frequency-dependent parameters included in the timing models

in each paper. Since the SF removes the mean, the differences are not important

here. The bottom left panel shows δDM(t) after a linear trend has been removed.

A periodic trend remains in the time series with a roughly one-year period. The

panels on the right show the corresponding DM SFs of the time series on the left.

In the top right, we show the extrapolation of DDM assuming a purely Kolmogorov

medium and using a scintillation timescale of 2258 s at 1.5 GHz (solid black line,
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Keith et al. 2013) and note that all three SFs do lie well above this extrapolation.

We calculate the SF for the Keith et al. (2013) DM(t) with lag bins that are

multiples of 0.25 yr (91.3 days), equal to the minimum sampling time for Keith

et al. (2013). For the other two SFs, we use bins that are multiples of 30 days.

The light gray, hatched region denotes nominal errors in the extrapolation from a

multiplicative error of
√

2 on the scintillation timescale, known for PSR B1937+21

Cordes et al. (1986, 1990); Keith et al. (2013). The dark gray region shows the ±1σ

deviations from the mean DM SF on simulations of nine years of DM variations that

include: a Kolmogorov wavenumber spectrum; the best-fit linear trend of the data

(dDM/dt = −2.27± 0.04× 10−4 pc cm−3 yr−1); a sinusoid with a one-year period

and an amplitude of 5× 10−5 pc cm−3; and white, Gaussian noise with an rms of

σn = 2.4× 10−5 pc cm−3 in the first five years and 1.2× 10−5 pc cm−3 in the last

four years, equal to the median error corresponding to each of the backends used

in the NG9 data set. The DM SF from NG9 is consistent with these simulations.

In the bottom right, we show the results of simulations when all of the above are

included but a linear trend is fit and subsequently removed from the time series

before computing the SF, which can remove power from both the linear component

and some low-frequency structure in a given time series. The shape of the gray

region matches some of the shape present in the SF, though the position indicates

that the sinusoidal term should possibly have a smaller amplitude with a more

peaked shape. Few numbers of DM increments in bins at large time lags lead to

deviations from the mean SF. A more detailed analysis of the DM time series for

PSR J1909−3744 will be presented by M. L. Jones et al. (in preparation).

Using Eq. 4.14 and its assumption of density changes occurring at large length

scales only, we can use our measured, best-fit dDM/dt to infer the electron density

at the pulsar, ne(xp0). The transverse components of velocity are vα = −50.61 ±
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0.01 km s−1 and vδ = −192.32 ± 0.01 km s−1 with a distance of 1.14+0.04
−0.03 kpc

(Jacoby et al. 2005; Antoniadis 2013). The barycentric, systemic radial velocity is

−37±11 km s−1 (J. Antoniadis, priv. comm.). We find the pulsar parallel velocity

component vp‖ by removing the local solar motion and correcting for differential

Galactic rotation. We take the local solar motion to be 18.0 ± 0.9 km s−1 in the

direction (lg, bg) = (47.9◦ ± 3.0◦, 23.8◦ ± 2.0◦) and assume a locally flat, galactic

rotation curve (Frisch et al. 2011). PSR J1909−3744 lies nearly in the direction of

the Galactic center with (lg, bg) = (359.7◦,−19.6◦) and therefore the change in the

velocity vector due to differential galactic rotation is negligible and we can ignore

transverse components in our calculation. Taking the electron density of the LIC to

be ne(xe0) ≈ 0.15±0.05 cm−3 (Frisch et al. 2011), we find ne(xp0) = 7.6±2.9 cm−3,

about two orders of magnitude greater than the average local electron density of

the galaxy in that region (Cordes & Lazio 2002; Frisch et al. 2011).

PSR B1937+21

Ilyasov et al. (2005) show a long-term trend in a 20-year DM time series extending

to ∼ 2003.5 (MJD 52800) that has a strong, decreasing trend with an average

derivative dDM/dt ≈ −1.14 ± 0.03 × 10−3 pc cm−3 yr−1. Ramachandran et al.

(2006) show similar results. Long-term correlated variations are superposed with

the linear trend. The best-fit line of the SF is β = 3.66± 0.04, though the analysis

from Kaspi et al. (1994) on DM variations up to 1993 alone suggests β = 3.874±

0.011. Both Kaspi et al. (1994) and Ramachandran et al. (2006) fit the Dφ(τ) to

determine ∆tISS, which will be a biased estimator if a deterministic, linear trend

is present.

We repeat our SF analysis as before, shown now in Figure 4.5, using the Ra-
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machandran et al. (2006) data. They include the time series from Kaspi et al.

(1994, circles), measured at 1400 and 2200 MHz. The crosses are measurements

from the Green Bank (GB) 140-foot telescope between 800 and 1400 MHz, the di-

amonds are measurements from the Arecibo Observatory (AO) between 1400 and

2200 MHz. Differences in DM estimation and frequency-dependent delays used

mean that we currently cannot align the Ramachandran et al. (2006) time series

with the Keith et al. (2013) time series measured at later epochs. Therefore, we

ignore the latter time series here and in subsequent analyses.

We measure dDM/dt = −8.39±0.14×10−4 pc cm−3 yr−1 for the Ramachandran

et al. (2006) data, suggesting a long-term linear trend remains present in the time

series. We again simulate a Kolmogorov medium with ∆tISS = 327 s at 1.5 GHz

(Keith et al. 2013) and include a linear trend with slope measured above and

additive, Gaussian white noise. The varying scintillation timescale over years is not

included in the realizations and biases our overall results but not the conclusions.

We find the rms of the noise by modeling the SF as DDM(τ) = Cτα + 2σ2
n (see

Appendix 4.12.2 for more details) and find σn = 1.3 × 10−4 pc cm−3. Again, the

measured SF shows good agreement with our realizations.

132



T
ab

le
4.

2.
M

ea
su

re
m

en
ts

of
D

M
d
er

iv
at

iv
es

an
d
R
d
D

M
/
d
t

P
u
ls

ar
P

ar
am

et
er

s
S
ci

n
ti

ll
at

io
n

P
ar

am
et

er
sa

D
M

D
er

iv
at

iv
es

b
D

er
iv

ed
R

es
u
lt

s
P

u
ls

ar
D

M
c

P
M

c
D

d
ν

∆
ν I

S
S

∆
t I

S
S

T
d
D

M
/d
te

σ
d
D

M
/
d
t

R
d
D

M
/
d
t

p
c

cm
−

3
m

as
y
r−

1
k
p

c
G

H
z

M
H

z
s

y
r

10
−

3
p

c
cm
−

3
y
r−

1

J
03

58
+

54
13

57
.1

4
12
.3
±

0.
3

1.
1
±

0.
2

1.
0

0.
78

9
-

16
.4

–2
.6
±

0.
8f

0.
24

11
.1

J
05

43
+

23
29

77
.7

1
22
±

8
2.

06
1.

0
0.

06
9

-
20

.7
–4

.9
±

0.
6f

1.
3

3.
7

J
08

35
−

45
10

67
.9

9
57
.9

8
±

0.
08

0.
29
±

0.
02

0.
61

1.
5
×

10
−

4
3

5.
7

5
±

1g
9.

4
0.

53
J
10

24
−

07
19

6.
49

59
.7
±

0.
3

0.
53
±

0.
22

1.
5

26
8

41
80

15
.1

0.
22
±

0.
06

0.
04

7
4.

7
J
10

45
−

45
09

58
.1

7
8.

0
±

0.
2

0.
30
±

0.
17

1.
5

0.
09

4
11

9
17

.0
–3

.6
6
±

0.
13

0.
90

4.
1

B
15

34
+

12
h

11
.6

2
25
.3

28
±

0.
01

2
1.

05
1
±

0.
00

5
0.

43
1.

1
66

0
3.

3
–0

.3
16
±

0.
01

0
0.

08
1

3.
9

5.
0

–0
.0

43
±

0.
00

8
0.

07
6

0.
57

4.
7

–0
.2

94
±

0.
00

7
0.

07
7

3.
8

2.
3

1.
01
±

0.
03

0.
08

6
11

.7
2.

3
–0

.0
1
±

0.
05

0.
08

6
0.

12
J
15

43
+

09
29

35
.2

4
8.

13
±

0.
07

7.
7
±

1.
2

1.
0

0.
29

9
-

21
.4

26
±

5f
0.

54
48

.5
J
16

00
−

30
53

52
.3

3
7.

2
±

0.
3

5.
0
±

3.
8

1.
5

0.
09

27
1

9.
1

–0
.6

3
±

0.
3

0.
50

1.
3

J
16

43
−

12
24

62
.4

1
7.

3
±

0.
3

0.
45
±

0.
08

1.
5

0.
02

2
58

2
17

.0
–1

.2
3
±

0.
05

0.
24

5.
2

J
17

30
−

23
04

9.
62

20
.2

7
±

0.
06

0.
53

1.
5

12
.4

16
15

16
.9

0.
56
±

0.
05

0.
10

5.
5

J
17

32
−

50
49

56
.8

2
9.

9
±

0.
3

1.
41

1.
5

5.
4

12
00

8.
0

–0
.8

8
±

0.
12

0.
15

6.
0

J
17

44
−

11
34

3.
14

21
.0

2
±

0.
03

0.
42
±

0.
02

1.
5

60
20

70
16

.1
–0

.1
32
±

0.
01

8
0.

08
4

1.
9

J
18

33
−

08
27

41
1

34
±

6
4.

5
1.

0
1.

6
×

10
−

4
-

5.
7

–1
30
±

20
g

40
.6

3.
2

133



T
ab

le
4.

2
(c

on
t’

d
)

P
u
ls

ar
P

ar
am

et
er

s
S
ci

n
ti

ll
at

io
n

P
ar

am
et

er
sa

D
M

D
er

iv
at

iv
es

b
D

er
iv

ed
R

es
u
lt

s
P

u
ls

ar
D

M
c

P
M

c
D

d
ν

∆
ν I

S
S

∆
t I

S
S

T
d
D

M
/d
te

σ
d
D

M
/
d
t

R
d
D

M
/
d
t

p
c

cm
−

3
m

as
y
r−

1
k
p

c
G

H
z

M
H

z
s

y
r

10
−

3
p

c
cm
−

3
y
r−

1

J
19

09
+

11
02

14
9.

98
9
±

8
4.

8
1.

0
0.

01
2

-
15

.1
–1

5.
8
±

1.
2f

1.
9

8.
3

J
19

09
−

37
44

10
.3

9
37
.1

0
±

0.
02

1.
27
±

0.
03

1.
5

37
22

58
8.

2
–0

.2
97
±

0.
00

6
0.

08
7

3.
4

J
19

35
+

16
16

15
8.

52
16
.1

3
±

0.
15

4.
55

0.
61

0.
00

2
18

34
.1

2.
3
±

0.
3f

1.
6

1.
5

B
19

37
+

21
71

.0
2

0.
42

1
±

0.
00

3
7.

7
±

3.
8

1.
5

1.
2

32
7

15
.5

–0
.5

9
±

0.
03

0.
39

1.
5

J
21

29
−

57
21

31
.8

5
13
.3
±

0.
1

0.
53
±

0.
25

1.
5

17
.1

30
60

15
.4

–0
.1

6
±

0.
04

0.
06

1
2.

6

a
P

ar
am

et
er

s
fo

r
ν

=
0.

43
G

H
z

m
ea

su
re

m
en

ts
fr

om
B

og
d
an

ov
et

al
.

(2
00

2)
,

fo
r
ν

=
0.

61
G

H
z

m
ea

su
re

m
en

ts
fr

om
S
ti

n
eb

ri
n
g

et
al

.
(2

00
0)

,
fo

r
ν

=
1.

0
G

H
z

m
ea

su
re

m
en

ts
fr

om
P

S
R

C
A

T
(M

an
ch

es
te

r
et

al
.

20
05

,
u
si

n
g

2π
∆
ν I

S
S
τ I

S
S

=
C

1
=

1.
16

),
an

d
fo

r
ν

=
1.

5
G

H
z

m
ea

su
re

m
en

ts
fr

om
K

ei
th

et
al

.
(2

01
3)

.
T

h
e

n
u
m

b
er

of
si

gn
ifi

ca
n
t

d
ig

it
s

ar
e

p
ro

v
id

ed
b
y

th
e

in
d
iv

id
u
al

re
fe

re
n
ce

s.
b
T

im
es

p
an

an
d
d
D

M
/d
t

re
fe

re
n
ce

s
m

at
ch

.
c
C

ol
u
m

n
d
at

a
fr

om
P

S
R

C
A

T
(M

an
ch

es
te

r
et

al
.

20
05

)
u
n
le

ss
ot

h
er

w
is

e
m

ar
ke

d
.

d
D

is
ta

n
ce

s
w

it
h

er
ro

rs
fr

om
p
ar

al
la

x
m

ea
su

re
m

en
ts

(h
t
t
p
:
/
/
w
w
w
.
a
s
t
r
o
.
c
o
r
n
e
l
l
.
e
d
u
/
r
e
s
e
a
r
c
h
/
p
a
r
a
l
l
a
x
/

an
d

re
fe

re
n
ce

s
th

er
ei

n
),

d
is

ta
n
ce

s
w

it
h
ou

t
er

ro
rs

fr
om

N
E

20
01

(e
rr

or
s

ar
e
∼

20
%

),
an

d
d
is

ta
n
ce

fo
r

P
S
R

B
15

34
+

12
fr

om
b
in

ar
y

or
b
it

al
p

er
io

d
d
er

iv
at

iv
e

(F
on

se
ca

et
al

.
20

14
).

e
V

al
u
es

fr
om

R
ea

rd
on

et
al

.
(2

01
6)

u
n
le

ss
ot

h
er

w
is

e
m

ar
ke

d
.

f H
ob

b
s

et
al

.
(2

00
4)

.
g
P

et
ro

ff
et

al
.

(2
01

3)
.

h
A

ll
va

lu
es

fr
om

F
on

se
ca

et
al

.
(2

01
4)

ex
ce

p
t

th
e

sc
in

ti
ll
at

io
n

p
ar

am
et

er
s

(B
og

d
an

ov
et

al
.

20
02

).

134

http://www.astro.cornell.edu/research/parallax/


PSR B1821−24

Cognard & Lestrade (1997, see also Backer et al. 1993) show a DM time series

with a long-term increasing trend with dDM/dt ≈ 0.005 pc cm−3 yr−1 over a

six-year period. Again we ignore DM variations from Keith et al. (2013) because

of the absolute DM difference. Using measurements from GB and the Nançay

radio telescope, Cognard & Lestrade (1997) find that the spectral index of the

wavenumber spectrum is β = 3.727 ± 0.211. Figure 4.6 shows our SF analysis,

with red noise realizations with ∆tISS = 75 s at 1.5 GHz (Keith et al. 2013) and an

estimated σn = 2.1× 10−3 pc cm−3. The LOS to PSR B1821−24 is also consistent

with a Kolmogorov medium.

Deterministic Linear Trends from DM Derivatives

We calculateRdDM/dt for pulsars in the literature with measured dDM/dt. To calcu-

late σdDM/dt, we use pulsars with a measured scintillation bandwidth ∆νISS or those

that can be estimated from the scattering timescale τISS using 2π∆νISSτISS = C1,

where C1 = 1.16 for a uniform medium with a Kolmogorov wavenumber spectrum.

Assuming such a medium, we estimate the SM using Eq. 10 of Cordes & Lazio

(2002) as

SM = 7.15× 10−4 kpc m−20/3
(

∆νISS,MHzν
−22/5
GHz Dkpc

)−5/6

. (4.52)

We either use parallax distances or binary orbital period derivative (Ṗb) distances to

estimate SM when available, and otherwise use DM distances from NE2001 (Cordes

& Lazio 2002). We convert proper motion measurements into pulsar perpendicular

velocities assuming vp⊥ dominates veff⊥ (which may not be true for slow moving

MSPs) and differential galactic rotation is negligible, both of which may contribute
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Figure 4.7: DM time derivative dDM/dt versus the rms DM gradient σdDM/dt.
Canonical pulsars (CPs) are shown in red triangles and MSPs in black circles. We
highlight the linear DM segments of the MSP B1534+12 in blue squares and the
blue star for MSP J1909−3744. Two of the blue squares for B1534+12 closely
overlap with J1909−3744. The solid line represents RdDM/dt = 1 whereas the
dashed line represents RdDM/dt = 5, exponentially increasing to the top left.

systematic uncertainties in our analysis. However, under these assumptions, we

combine SM, vp⊥ , and the total observing span T to calculate σdDM/dt and thus

RdDM/dt.

Table 4.2 lists pulsar values we use in the literature in our analysis and the

results. Figure 4.7 shows |dDM/dt| versus σdDM/dt for slow-period canonical pul-

sars (CPs, red triangles) and MSPs (black circles). We also highlight the five

linear trends of the MSP B1534+12 (blue squares; discussed in the following sec-

tion) and J1909−3744 (blue star). The lines represent RdDM/dt = 1 (solid) and 5
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with single, linear trends. Lines towards the left indicate potential deviations from
a wavenumber spectrum with spectral index β.

(dashed), where higher RdDM/dt (increasing exponentially to the top left) is greater

inconsistency with a Kolmogorov medium. J1909−3744 shows some evidence for

deviations from a Kolmogorov medium. Several other pulsars show marginal or

large deviations, including some MSPs with known chromatic timing noise such as

PSR J1643−1224 in NG9 (see also Arzoumanian et al. 2015a). Figure 4.8 shows

the ratio Rrms (Eq. 4.34) for the DM time series of the pulsars examined so far, with

J1909−3744 showing the most deviation (more toward the left) from a Kolmogorov

spectral index, consistent with the conclusion from the RdDM/dt metric.
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4.7.2 Non-Monotonic Trends from Electron-Density Struc-

tures in the ISM

DM(t) time series from pulsars show a combination of linear trends, stochastic vari-

ations, and, in a few cases, fast changes in slope that are both positive and negative.

Apparent slope changes can appear in particular realizations of a stochastic process

with a red power spectrum. But they can also result from slab-like structures if

they are suitably oriented relative to the LOS and the pulsar velocity. Such slabs

may represent static increases and deficits over the local mean electron density

that contribute as the LOS changes with time. Alternatively, they could be time-

dependent owing to motions of the shock front through neutral gas. Bow shocks

produced by the pulsars themselves may ionize atomic (and, less likely, molecular)

structures as they move through the ISM.

Backer et al. (1993) proposed that plasma wedges are responsible for linear

trends in DM(t). A plasma wedge has linearly increasing column density Ne(x)

transverse to the LOS. As the LOS moves across it, DM(t) will change linearly

until the wedge boundary is reached, if there is one. The wedge will also refract

by a constant refraction angle. Unlike other structures, however, a wedge of this

type will have zero transverse second derivative (except at the boundaries) and

therefore will not cause changes in measured flux density.

The effects of different geometries include:

Transverse motion (vp‖ = 0): For a density enhancement that is aligned

with the LOS, DMslab(t) will consist of a positive-going ‘pulse’ with

duration equal to the pulsar travel time across the slab thickness. For

a density deficit (e.g., from encountering a slab of atomic gas), the
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Figure 4.9: Two cartoon geometries for a pulsar p moving in different directions
with respect to the line of sight between the pulsar at p and the observer at o.
Blue reprents high-density structures and white represents low-density structures.
The bottom graphics show DM variations, δDM(t), that are monotonic on long
timescales.

pulse will be negative going. To first order, the pulsar distance does

not change so the unperturbed DM is constant in time.

Pulsar velocity component along the LOS (vp‖ 6= 0) and aligned slabs:

When the density slabs are aligned with the LOS, DM(t) again show

square-wave type pulses. The prevailing trend is for DM(t) to decrease

as the pulsar distance gets smaller, but this is interrupted by the density

deficits and enhancements.

Pulsar velocity component along the LOS (vp‖ 6= 0) and slanted slabs:

When the density slabs are slanted from the LOS, DM(t) can show a

saw-tooth pattern where it has a larger slope than the prevailing trend

or a slope with opposite sign. As in the previous case, the prevailing

trend is for DM(t) to decrease as the pulsar distance gets smaller, but

this is interrupted by the density deficits and enhancements.
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Pulsar velocity toward the observer (vp⊥ = 0): In this case, the pulsar

can ionize atomic hydrogen as it passes into the slab. The DM can

increase even if the pulsar moves toward the observer and the prevailing

trend is for a declining DM.

Some examples of the geometries can be seen in Figure 4.9.

Ionized Bow Shocks

So far, we have assumed that ISM structures are static. However, the pulsar can

actively modify its local environment. An extreme case is where the pulsar’s motion

toward the observer takes it through atomic hydrogen (HI) structures on scales of

tens of AU and larger, including filaments, with a typical column density of order

NHI ∼ 10−20 cm−2 (e.g. Stanimirović et al. 2007; Gibson 2007; McClure-Griffiths

et al. 2007). As the pulsar nears a filament, it will ionize the atomic gas through a

combination of radiation from the neutron star/magnetosphere and shock heating.

The standoff radius of the bow shock is given by the balance of ram pressure and

the pulsar’s relativistic wind,

rs =

(
Ė

4πρv2
pc

)1/2

≈ 266 AU Ė
1/2
33 n

−1/2
HI v−1

p100
(4.53)

for Ė = 1033Ė33 erg s−1, a pulsar velocity in units of 100 km s−1, and an effective

hydrogen density nHI cm−3. For the measured ranges of pulsar velocities, energy-

loss rates (Ė), and ISM densities, the standoff radius of the bow shock is tens of

AU to ∼ 0.1 pc. Therefore, DM(t) can show temporary increases even though the

prevailing trend would be a decrease because of the decreasing distance.

Bow shocks will cause changes in DM only if the pulsar moves through a chang-

ing gas density (see, for example, PSRs J2124−3358 and B2224+65; Gaensler et
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al. 2002; Chatterjee & Cordes 2004). For completely ionized gas there may be a

weak effect from the shock-enhanced gas density. A much larger effect will occur

from neutral gas that is shock ionized or pre-ionized by radiation from shocked gas.

The mean free path for ionizing radiation with hν = 13.6 eV for a cross section

σHI = 6.3× 10−18 cm2 is

lHI = (σHInHI)
−1 ≈ 1.1× 104 AU

nHI,cm−3

, (4.54)

much larger than both the nominal standoff radius and the distance traveled by a

pulsar in one year. However, for anticipated gas densities and temperatures (e.g.,

a shock temperature Ts ≈ 3mpv
2
p/k ≈ 3.6× 106 K; mp = proton mass, vp = pulsar

velocity, k = Boltzmann constant), there are insufficient photons to ionize a region

of this size. This is why Hα bow shocks are seen around some pulsars (e.g., PSRs

B1957+20, B2224+65, and J0437−4715; Brownsberger & Romani 2014) in thin

shells of pre-shocked atomic hydrogen that define the bow-shocks contours. For

velocities ∼ 100 km s−1 and densities nHI ≈ 1 to 10 cm−3, the distance traveled by

the pulsar over years is less than or comparable to the standoff radius. The DM

increment associated with shock ionized atomic gas is roughly

δDMbow ≈ ηsrsnHI ≈ 1.3× 10−3 pc cm−3ηsv
−1
p100

(nHIĖ33)1/2, (4.55)

where ηs ∼ 4 is a factor that takes into account the compression of interstellar gas

and its distribution inside the termination shock (Clegg et al. 1988). The nominal

value of δDMbow is sufficiently large to be interesting. Given the phase structure

of the ISM, we expect that most pulsars will not reside in atomic gas but perhaps

40% will (Draine 2011).
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Small-Scale Electron Density Variations

Because the ionized ISM contains a wide range of length scales (Armstrong et al.

1995), the density fluctuation term in Eq. 4.11 involving ∆ne(x(t)) also needs to

be considered. Its contribution to DM is

δDM(t) =

∫ zp0

ze0

dz∆ne(x(z, t)). (4.56)

Typical scales transverse to the LOS are |r| ∼ v⊥t ∼ 20 AU v⊥100tyr. The relevant

velocity veff⊥(z) is largest at the pulsar position (c.f. Eq. 4.7) for cases where

the proper-motion velocity is larger than the Earth’s velocity. Elsewhere along

the LOS and for slowly moving MSPs, the transverse scale can be substantially

smaller.

There is evidence for individual structures in the ISM on AU scales based

on refraction effects in pulsar dynamic spectra, extreme scattering events, and

intraday variable sources. These are likely confined to a small fraction of the LOS

and will produce maximum contributions to DM of order 10−5ne`10AU pc cm−3

where `10AU is the path length through the structure. The timescale for changes

depends on the density, size, and velocity of the structure so the derivative dDM/dt

can be comparable to or much smaller or larger than the contribution from the

changing distance analyzed in the previous subsection.

Implications for PSR B1534+12

We make use the second-order SF approach developed in §4.5 to analyze the DM

time series presented in Fonseca et al. (2014). While they note five significant

linear trends in DM, they have no temporal information in the first block and so

we remove it from our analysis.
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Figure 4.10: Analysis of DM time series and SFs for PSR B1534+12. Top left:
The DM offsets δDM(t) from Fonseca et al. (2014, the first, isolated epoch has
been removed) with their best fit linear trends overplotted. Top right: Second-
order increments of DM, ∆(2)DM(t, τ). The gray regions indicate the 1 and 2σ
expected regions in Eq 4.39 assuming a Kolmogorov wavenumber spectrum and
the appropriate scintillation timescale, ∆tISS = 660 s. Bottom left: 100 realiza-
tions of δDM(t) from a Kolmogorov medium scaled to the appropriate scintillation
timescale. Bottom right: The second-order increments of the DM realizations in
the bottom left. The shaded regions are the same as in the top right. The black
bars indicate the range of increments as calculated from all of the realizations,
with the blue circles indicating the 1σ bounds, matching the expectation.

Figure 4.10 shows the DM time series along with the second-order increments

of DM, which we use to indicate the presence of discrete changes in linear trends

over the expectation from a purely Kolmogorov medium. To account for the un-

equal sampling in δDM(t), we calculate increments as a function of τ by finding two

points separated from the central time t, one within the range τ±τ/2 and the other

within −τ ± τ/2. Increasing τ by 30 days at a time, we plot the second-order in-

crements in the top right panel. Combining Eqs 4.25 and 4.39, the probability dis-
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tribution of the increments will be a Gaussian function. Using ∆tISS = 660±180 s

measured at 430 MHz (Bogdanov et al. 2002), the 1 and 2σ expected regions are

shown in the gray bands. The points in the top right of the plot outside of the

bands and at τ > 500 days all result from the concave up turnover between the

second and third linear components and represent a ∼ 7− 14σ deviation from the

expectation of a purely Kolmogorov medium. Points well below the bands come

from either of the other two changepoints. The points deviating from zero at low

lags are purely from the noise in the measurements, not accounted for in the gray

bands. The bottom left shows 100 realizations of DM purely from Kolmogorov

power-law wavenumber spectra and the full range (minimum to maximum value)

of second-order increments for each τ on the bottom right from all 10,000 realiza-

tions. We show the results of our simulations to demonstrate that there is good

agreement between the rms of the second-order increments from simulations and

the analytic solution. Again, the fact that several measured increments for PSR

B1534+12, notably the ones associated with the second changepoints, fall outside

of the expectations from simulations imply that the upturn in DM cannot be due

to a purely Kolmogorov medium. The time series is similar to those shown in Fig-

ure 4.9 after a linear trend has been removed, suggesting that there are interleaved

density structures along the LOS. Contemporaneous scintillation parameters and

pulsar flux density measurements would be valuable for testing whether the DM

time series is at all contaminated by diffraction and refraction effects.

4.8 Periodic Variations in DM

In this section, we determine how periodic trends can appear in DM time series.

DM(t) will vary as the LOS passes across spatial gradients in electron density.
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Local electron-density variations in time will also cause DM variations. We assess

the periodicites and phases associated with each periodic contribution to DM.

4.8.1 Ionosphere

Changes in the electron-density within the ionosphere can cause differences in DM

between observatories. The changes correlate with the incident solar flux at a

particular location. Variations are known to occur daily from Earth’s rotation,

yearly due to Earth’s orbital motion, and on 11-year cycles due to changes in solar

magnetic activity (see Huang & Roussel-Dupré 2006, for an ionospheric electron-

density model over a specific LOS). Measurements of the electron density can be

peformed by satellite, rocket, incoherent scatter radar, and ionosonde.

The ionosphere can be represented as a series of semi-Epstein layers (Rawer

1982) with electron density as a function of the normalized distance parameter z,

ne(z) =
4n0

[1 + exp (z)]2
exp (z) (4.57)

with the peak electron density of the layer, n0, and z = (hs − h0)/H, where hs is

the height above the Earth’s surface, h0 is the height of the peak electron density,

and H is the characteristic thickness of the layer. Note that as hs � h0, ne(z)

tends towards zero.

Nava et al. (2008, NeQuick 21) model the E, F1, and F2 ionospheric layers using

one semi-Epstein layer to describe the bottomside and topside of each layer. They

introduce a “fadeout” function that multiplies z in the E and F1 layer functions

to prevent secondary maxima around the F2 peak height. The peak heights, peak

1http://t-ict4d.ictp.it/nequick2
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Figure 4.11: Estimates of the ionospheric contribution to DM from interpo-
lated global navigation system satellite measurements along the LOS to PSR
J1909−3744 from Green Bank Telescope (GBT, black) and the Parkes Telescope
(PKS, blue) daily over nine years. Top left: Measurements of DM computed daily
when J1909−3744 transits each telescope. The difference between the GBT and
PKS DM estimates are shown in the panel beneath. Top right: DM estimated from
Parkes at transit versus from GBT at transit. The dashed, diagonal line represent
the same value at both sites while the solid line is the difference in the geometric
factor G(θz) between both sites. Bottom: Similar to the top except that DM es-
timates were determined simultaneously, approximately two hours after transit at
GBT so that G(θZ) was the same at both sites.

electron densities, and thicknesses of each layer change as a function of latitude

and longitude, (φg, λg), over the Earth’s surface due to the structure of its time-

varying magnetic field. There are additional time-dependent factors regarding the

incident solar flux at a given (φg, λg), including the change in the Sun’s zenith

angle over a day, the change in the seasons for a given latitude φg, and the variable
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solar flux that changes both daily and over a solar cycle. Therefore, the three layer

parameters, n0, h0, and H, are all complex functions of longitude, latitude, and

time.

In general, the DM is the integral of electron density over some path s through

the atmosphere that depends on the geographic coodinates of the observatory and

the apparent coordinates (i.e., altitude and azimuth) of the pulsar, which in turn

depend on the equatorial coordinates of the source (αe, δe) and time t. The path

to integrate over is then s(φg, λg, αe, δe, t) and the total ionospheric contribution

to DM is simply the line integral

DMion,NeQuick(t, φg, λg, αe, δe) =

∫ smax

0

∑

i=E,F1,F2

ne,i(s(t, φg, λg, αe, δe), φg, λg, t)ds(4.58)

up to some maximum distance smax, where we sum the total electron over each

layer.

We study the variations of electron density in the ionosphere using two methods.

The first estimates the ionospheric contribution to DM using global navigation

satellite system (GNSS) measurements from the International GNSS Service (IGS;

Dow et al. 2009). The total electron content (TEC) is measured via frequency-

dependent signal propagation delays similarly to pulsar timing delays but between

a ground receiver and a transmitting satellite along a given LOS. Using multiple

LOSs at a given time, the IGS constructs a 2D surface map of the ionospheric

electron density. These maps typically have time resolution of two hours and

spatial resolution of 2.5 × 5.0 degrees in latitude and longitude, respectively. We

linearly interpolate intermediate TEC values in both space and time. While the

original measurements between receiver and satellite are along some altitude and

azimuth, the reported TEC values are in the zenith direction. Therefore, we must

adjust the measurements for a particular LOS. To simplify, we approximate the
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Figure 4.12: Comparison between solar wind and ionospheric DM variations, the
latter as computed by the NeQuick 2 model.

ionosphere as a uniform slab of electrons with an inner (smin) and outer (smax)

height of 60 and 600 km above the Earth’s surface, respectively. Therefore, we

can estimate the TEC along a LOS by multiplying the zenith TEC by a geometric

factor G(θz) that accounts for the increase in path length through the ionosphere

and depends only on the zenith angle θz to the pulsar,

DMion,IGS(t, φg, λg, αe, δe) = ne(φg, λg, t)(smax−smin)G(θz(φg, λg, αe, δe, t)). (4.59)

Figure 4.11 shows our daily estimates of DMion(t) along the LOS to PSR

J1909−3744 from both the Green Bank Telescope (GBT, black) in the Northern

Hemisphere and the Parkes Telescope (PKS, blue) in the Southern Hemisphere

using the method in Eq. 4.59. The top panel shows DM measurements at transit

on each day. Error bars come from the GNSS measurement errors alone, multi-
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plied by the same geometric factor dependent on the zenith angle. The overall

amplitude shift is a result of the constant difference in the zenith angle of the

pulsar at transit between the two sites. Differences in DM between GBT and PKS

are shown in the sub-panel beneath. The right panel shows the estimated DM

observed with PKS versus GBT, with the solid gray line representing the ratio of

the geometric factors. For reference, the median DM measurement error at the

GBT for this pulsar is ∼ 1 × 10−5 pc cm−3 for the latest backends (see NG9 for

information on the GUPPI backend) whereas the value at PKS is ∼ 3 × 10−5 pc

cm−3. Variations in the DM annually and over the solar cycle are visible. The

bottom panels of Figure 4.11 shows the result of simultaneous observations of the

pulsar at low elevation angles at both telescopes, such that the ratio of geometric

factors is 1:1, i.e., variability is due solely to differences in the ionosphere at differ-

ent local times. Such an observation occurs 110 minutes after the pulsar transits

the GBT when the zenith angle is ≈ 80.3◦, yielding a geometric factor of ≈ 3

increase over the zenith TEC measurement. The sites are separated by ∼ 112◦ of

longitude and observe the pulsar at nearly opposite local times. As the Earth’s

orbital position shifts, the local observing times shift, producing a phase difference

between the two time series. Smaller peaks separated from the yearly peaks by ap-

proximately six months are visible as the solar cycle maximum is approached just

past the end of the time series (again see Huang & Roussel-Dupré 2006, for this

intra-annual variability). Again, the right panel shows the PKS-estimated iono-

spheric DM versus the GBT-estimated DM, where the estimates in DM can differ

by measurable amounts even when observed at the same time. The bimodality

results from ionospheric differences between day and night between the sites.

The second method to study the ionospheric DM variations uses the mathe-

matical description above, implemented in the NeQuick 2 model (Nava et al. 2008).
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NeQuick 2 uses ionosonde measurements to determine the parameters of the semi-

Epstein layers (Eq. 4.57), along with solar radio flux measurements and a model

for the magnetic inclination that describes the shape of the Earth’s magnetic field

lines as a function of latitude, longitude, and time. For more details on the imple-

mentation, refer to Report ITU-R P.2297-0 (2013). By default, NeQuick 2 contains

parameters with a monthly time resolution, and a time series for PSR J1909−3744

is shown in comparison to the DM contribution from the solar wind, discussed in

the following sub-section, in Figure 4.12.

4.8.2 Solar Wind

Particles from the solar corona have enough kinetic energy to escape the Sun’s

gravity, becoming part of the interplanetary medium. The speeds and compositions

of these particles are not uniform, and measurements of the electron density are

carried out both from ground-based observing and in situ. Splaver et al. (2005)

model the electron density along the LOS to PSR J1713+0747 due to the solar

wind as a power-law ne(r) = n0 (1 AU/r)2 cm−3, where n0 is the electron density in

cm−3 at the Earth, based on measurements from the Ulysses spacecraft (Issautier et

al. 2001). They note that while the scaling holds over a large range of heliocentric

latitudes, it does not consider spatial variations with ecliptic latitude βe, namely

the higher-density slow wind at lower latitudes and the lower-density fast wind at

higher latitudes, nor does it consider temporal variations. They find that n0 =

5 ± 4 cm−3. You et al. (2007) present a generic two-piece model that accounts

for the positional variations using daily solar magnetic field maps from Wilcox

Solar Observatory but do not consider temporal variations; the coefficients for

their power-law components come mostly from observations taken at minima in
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the solar cycle. See references cited by You et al. (2007) therein for more details.

Sokó l et al. (2013) (see also Provornikova et al. 2014) find that the total number

density of solar wind protons is ∼ 2−10 cm−3 at 1 AU over a range of heliolatitudes

βh and over the course of a solar cycle. The highest densities comes from |βh| ∼<

20◦. At solar cycle maxima, the total density at 1 AU is a weak function of

heliolatitiude with a value of ∼ 6 cm−3. Heading towards solar cycle minima, the

proton density becomes more peaked at central heliolatitudes though the overall

quantity drops. We follow the methods in Sokó l et al. (2013) to create an empirical

model of Carrington rotation-averaged (one period is 27.2753 days) proton density

as a function of heliolatitude and time spanning from 1990 to 2011. We linearly

interpolate in both heliolatitude and time for smoother sampling of the proton

density. Inspection of time series from the Solar Wind Observations Over the Poles

of the Sun (SWOOPS2) experiment on the Ulysses spacecraft show that ne ∼ np,

which we will assume to obtain the electron density at 1 AU, n0(βh, t) (Bame et al.

1992). The model assumes an ne ∝ r−2 dependence, which is supported elsewhere

in the literature (e.g. Issautier et al. 1998). Therefore, we can write the solar wind

DM in the direction of the pulsar as

DMsw(t, βh) = 4.848× 10−6 pc cm−3

∫ (
n0(βh, t)

cm−3

)(
1 AU

r

)2

ds, (4.60)

where the integration path s = s(βh, r). We limit the integration to within 100 AU

of the Sun. The typical solar wind speed is of the order several hundred kilometers

per second and so the propagation time to the integration boundary is of order

one year (Sokó l et al. 2013). However, because of the r−2 factor, only the electron

density within the inner ∼< 10 AU contribute to any currently measurable DM

variation, which has a propagation time of approximately one Carrington rotation.

Since the intrinsic time-averaging with the model is of this order, exclusion of the

2http://spdf.sci.gsfc.nasa.gov/pub/data/ulysses/plasma/swoops/ion/hires/
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Figure 4.13: Time series of DM for PSR J1909−3744 from NG9 after a weighted,
quadratic trend has been removed as in Figure 4.1. The solid gray line shows
the model DMsw(t) from Figure 4.12 with an arbitrary vertical offset added. The
dashed gray line shows the model shifted forward in time by 11 years (one average
solar cycle) to provide a comparison of the periodicity and shape of the model time
series with the data at later times.

time-varying mean speeds of the electrons should not greatly affect our results. We

note that Eq. 4.60 only accounts for the average behavior of the solar wind over

Carrington rotations and does not include components from transient events such

as solar flares or coronal mass ejections.

Figure 4.12 shows the model solar wind DM and the ionospheric DM from the

NeQuick 2 model along the LOS to J1909−3744. For the ionospheric component,

we set the observation during pulsar transit once per month. Again, the median

error on DM for J1909−3744 measured with GBT is ∼ 1 × 10−5 pc cm−3, which

implies that the ionospheric contribution is marginally detectable in the time series,
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Figure 4.14: Maximum change in model solar wind DM centered around a one-year
smoothing window at each given epoch for a pulsar at a given ecliptic latitude.

whereas the solar wind contribution is significantly measurable. Figure 4.13 shows

the predicted solar wind contribution plotted against the J1909−3744 time series

with the best-fit quadratic trend removed for clarity. The vertical offset of the

predicted time series was set arbitrarily to roughly match the DM offsets (as the

nominal DM has already been removed). Even without including transient solar

events, our model agrees with the overall periodic trend in the time series, both in

phase and peakedness of the yearly maxima.

Figure 4.14 shows the peak-to-peak change in the DM contribution from the

solar wind model in a given one-year smoothing window as a function of ecliptic

latitude. Pulsars lying closer to the ecliptic plane will have a much greater peak

DM since the LOS will cross near the Sun and the electron density scales as r−2.

Pulsars observed far out of the plane will show minimal amounts of solar wind
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DM variations. For reference, PSR J1909−3744 has βe ≈ −15.2◦ with the mean

peak-to-peak change around 1.45 × 10−4 pc cm−3, which can also be seen as the

predicted amplitude of variations in Figure 4.13.

4.8.3 Heliosphere

Particles comprising the solar wind interact with the surrounding ISM at the he-

liospheric boundary. As the Sun moves through the ISM, it creates a bow shock

towards the nose (upwind) direction with a long tail opposite the direction of the

Solar System’s motion. Turbulence generated at the interface creates spatial and

temporal variations in electron density. In general, the DM for a specific LOS can

be written as

DMhel(t, βe, λe)=

∫
ne,hel(s(t, βe, λe), t)ds (4.61)

where (λe, βe) are ecliptic longitude and latitude. The path s depends on the

position of the Earth in its orbit. For reference, the nose direction of the heliosphere

is roughly (λe, βe) ≈ (254◦, 5◦) (Kurth & Gurnett 2003), equivalent to (αe, δe) ≈

(253.3◦,−17.5◦) or (lg, bg) ≈ (2.6◦, 16.4◦).

Opher et al. (2015) simulate the heliosphere region extending from 30 to

1500 AU. They assume a spherically symmetric solar wind flow at the inner bound-

ary with a given speed, number density, and temperature, along with a radial and

azimuthal solar magnetic field. The outer boundary interacts with the ISM and

also has a relative velocity, number density, and temperature. The interstellar

magnetic field is slanted with respect to the downwind direction. They find that

the solar magnetic field forces the solar wind plasma into jets which are then blown

into the tail direction by the interstellar wind. Turbulent instabilities form into
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Figure 4.15: Top: Map of DMhel(λe, βe). The nose direction is in the center of the
left half of the image whereas the tail direction is in the center of the right half.
Bottom: Maximum change in DM due to the Earth’s orbital motion around the
Sun. Note the different scales between the two panels. The thin, ringed structures
visible in the nose direction (not the broad ringed structure) are a result of sampling
errors in the 3D grid.

two tails and the heliosphere retains a two-lobed structure as the tails remain

separated.

Figure 4.15 shows the electron density from simulations in Opher et al. (2015)

integrated out to a distance of 1500 AU from the Sun. The heliosphere is several

times denser through the bow shock region in the nose direction than through the

tail direction. The bottom panel shows the peak-to-peak variations in DM due to

the changing LOS from the Earth orbiting the Sun to the stationary pulsar. The

maximum change is ∼ 10−8 pc cm−3 when looking at turbulence through the tail.

The effect of the heliosphere, therefore, is approximately three orders of magnitude
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Figure 4.16: Effects of a Gaussian cloud on timing measurements. Left: Example
ray-tracing geometry of emission (where the z-direction has been collapsed in the
image) from a pulsar (gray star) located at (1 AU, 2 AU, 1 kpc) traveling through
a cloud with N0 = 0.01 pc cm−3 and a = 1 AU located at (0 AU, 0 AU, 0.5
kpc) hitting the Earth in an orbit centered around the Sun located at (1 AU,
–1 AU, 0 kpc). The orbit of the Earth (large gray circle, t = 0 yr is given by
the white dot) is in the plane of the image (i.e., z = 0 AU at all times). The
background colors represent the column density profile of the cloud. The smaller
gray circle drawn over the cloud represents the sampling of the cloud screen due to
the Earth’s orbital motion and the position of the pulsar. We integrate at points
over the entire orbit; four rays (white lines) have been shown to demonstrate the
integration paths from the pulsar to the Earth. Top right: The three delays ∆tDM

(blue), ∆tgeo (green), ∆tbary (red) in order from top to bottom. Bottom right: DM
due solely to the integral of electron density over the ray paths (solid) as compared
with the measured DM when all three delays are summed together (dotted).

smaller than current sensitivity (for PSR J1909−3744 in NG9) and requires ∼ 0.05

ns timing precision to measure. While the heliosphere does change over time, the

overall structure remains similar. Since the crossing time for solar wind particles

through the heliosphere is of the order years, changes in the electron density along
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Figure 4.17: Timing delays associated with refraction due to a Gaussian plasma
lens as a function of N0 and a. Top left: Dispersion delay ∆tDM. Top right:
Geometric delay ∆tgeo. Bottom left: Barycentric delay ∆tbary. Bottom right: Sum
of all three delays. The amplitude of the timing delays typically increases towards
the bottom right.

a given LOS will be small from epoch to epoch. Given that the overall amplitude

of the heliospheric DM is below current sensitivity to DM, we do not consider

temporal variations in the heliosphere.

4.8.4 Gaussian Plasma Lens in the ISM

Using the formalism in §4.6, we simulate a Gaussian, electron density cloud and

solve Eq. 4.51 to trace incident rays back from the Earth to the pulsar. We show an

example calculation of the ray paths through a cloud with central column density
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N0 = 0.01 pc cm−3 and size a = 1 AU in Figure 4.16. The pulsar is at a distance

of 1 kpc and the cloud is halfway in between.

We numerically integrate through our example cloud and show the delays in

the top right panel of Figure 4.16. The bottom right panel shows the DM delay

purely as the integral of the electron density along the ray path (i.e., proportional

to ∆tDM alone; solid line) along with the estimated DM when all three delays are

summed together (dotted line). In our example, both the amplitude and phase

change significantly.

To explore the possible parameter space of N0 and a, we place a pulsar at (1

AU, 2 AU, 1 kpc), directly in line with the Gaussian cloud at (0 AU, 0 AU, 0.5

kpc). The Sun is located at (1 AU, –1 AU, 0 kpc) with the Earth orbiting in the

z = 0 plane. Figure 4.17 shows the peak-to-peak variations in the time delays

separately and then when all three are added together.

While we consider the case of the LOS crossing through a Gaussian cloud

periodically, the same formalism can be applied to single crossing events (Clegg

et al. 1998). Clouds with a small perpendicular velocity will cause periodic DM

variations modulated by an envelope with width equal to the timescale of the

cloud crossing. In general, the phase of DMc(t) can be arbitrary with respect to

previously mentioned periodic contributions.

4.9 Implications for ISM Study and Precision Timing

Analysis of DM variations can enable the study of the electron density along the

entire LOS to a pulsar. While we see that the ISM is consistent with a Kol-
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mogorov medium, interpretations of DM SFs could be used to search for a different

wavenumber spectral index or anisotropies along certain LOSs. Measurements of

DMs coming from an array of pulsars distributed across the sky has the potential

to probe the structure of the ISM and solar wind. Changing DMs due to pulsar

motion through the ISM can also be valuable inputs to large-scale electron density

models of the Galaxy.

Assuming that the only chromatic effect on pulses is the dispersive delay, DM

can be estimated on a per-epoch basis using a wide range in frequency coverage. In

that case, variations in DM will not affect pulsar TOAs used for precision timing

experiments. Numerous chromatic effects are however known to exist.

• Frequency-dependent variations of the pulse profile will change the measured

TOAs by a constant offset per frequency and lead to a large error in DM if

not globally fit for over a many-epoch data set (Liu et al. 2012; Pennucci

et al. 2014). Profile evolution is assumed to be time-independent in many

pulsars (see Lyne et al. 2010 for counterexamples). A simultaneous fit over

parameters that describe the profile evolution and the DM will reduce their

covariance. Profile evolution coupled with amplitude modulation from in-

terstellar scintillation will cause an effective shift in the reference frequency

that changes the estimated DM on the order of a diffractive timescale.

• Estimates of DM will be contaminated by other chromatic timing effects

that result from refraction and multipath propagation. As shown by Foster

& Cordes (1990), if refraction is allowed to contaminate DM estimates, the

SF will show excess amplitude on long times compared to extrapolation from

the diffraction timescale and will also lead to an overestimated wavenumber

spectral index. Multipath propagation causes temporal broadening of pulse
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shapes that increase with lower frequency. Pulse broadening will couple

with intrinsic profile shape changes, adding additional time-dependent TOA

errors, and thus producing apparent DM changes (Levin et al. 2016).

• Scattering causes spatial averaging over the ISM in any single-epoch mea-

surement of DM (Cordes et al. 2016). DM is therefore a function of frequency.

• DM measured with asynchronous multi-frequency measurements will be mis-

estimated as the LOS integral will change, due to stochastic changes in the

ISM and to systematic effects such as the increasing Earth-pulsar distance

(Lam et al. 2015).

• Even simultaneous measurements from different locations on the Earth can

result in different observed values of DM due to separate LOSs through the

ionosphere.

High-precision timing experiments require minimization of all possible TOA errors,

especially those correlated in time. Therefore, the combination of data from multi-

ple telescopes will require care to avoid contamination from the various achromatic

effects listed.

Inclusion of DM terms that describe linear or periodic variations can reduce

the number of model parameters in a timing fit but will also be highly covariant

with other parameters included in the fit (Splaver et al. 2005). Linear terms for

DM evolution in a timing model are covariant with pulsar spin and spin-down

parameters. In a pulsar timing array experiment to detect and study gravitational

waves (GWs), such terms also remove sensitivity to the lowest-frequency GWs.

Annual and semi-annual variations will be covariant with astrometric parameters

and GWs with the same frequencies.
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Removal of frequency-dependent terms other than DM, such as profile evolution

parameters or scattering delays, in a timing model will change the absolute DM

measured. The absolute differences must be taken into account when combining

DM measurements obtained by different methods; TOAs incur additional errors

otherwise. In addition, even with the same frequency-dependent terms included,

different methods exist for DM estimation and removal from TOAs. Keith et

al. (2013) utilize information regarding the correlations between epochs in their

DM determination; Demorest et al. (2013) do not. Since DM is not independent

from epoch to epoch, timing models should account for the correlations between

measurements. However, due to the stochastic component of the DM variations,

it may be impossible to completely remove per-epoch DM determination from

a timing model. Optimal DM estimation and removal strategies are therefore

necessary to minimize TOA uncertainties.

4.10 Summary and Conclusions

DM time series show a wide range of correlated variations. We model the possible

contributions to DM variations as the sum of systematic and stochastic effects

along the LOS through the media between the observatory and the pulsar. Linear

trends arise from the average motion of the LOS through the ISM and the full 3D

motion of the pulsar should be taken into consideration when studying linear trends

in DM time series. Disentangling the effects of changing distance and changing

LOS from parallel and transverse motion, respectively, is possible if scintillation

parameters (including flux density) are also measured. The change in distance over

a few years will have no effect on these parameters whereas transverse gradients

in the ISM density will.
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Changes in the LOS due to Earth’s annual motion, coupled with a variety

of effects that will be weighted differently for different pulsars, result in periodic

variations in DM. Any DM contribution from the ionosphere, solar wind, or he-

liosphere will be correlated across pulsars depending on their sky positions and

the relative position of the Sun. The relative phases of the three contributions

may be misaligned, again depending on the specific positions of the pulsars, and

so it is possible to disentangle the effects for a subset of pulsars. In the case of

the ionosphere, the periodicity may be semi-annual. In general, both types of

variations, linear and periodic, will contrbute to DM time series, along with a

stochastic component resulting from the turbulent ISM. The relative importance

of each component can only be determined on a pulsar-by-pulsar basis.

SFs are useful statistics for analyzing DM variations. DM time series will

generally include systematic trends along with stochastic variations from density

variations on a wide range of scales (e.g., Kolmogorov-like variations). The stochas-

tic term can be contaminated by any systematic trend in the time series, so time

series should be de-trended before using DM(t) to infer the properties of the ISM

along the LOS. Estimates of the wavenumber spectral index or the scintillation

timescale from the SF should also include realization errors. We show that once

the linear trends and realization errors are taken into account, PSRs J1909−3744,

B1937+21, and B1821−24 show time series consistent with a Kolmogorov electron-

density wavenumber spectra. PSR B1534+12, with its non-monotonic trends in

DM, is inconsistent with a simple Kolmogorov ISM.

Decomposition of DM time series into known, deterministic causes will allow for

the study of the local and interstellar electron density. Future studies of DM time

series should model known components to further probe the relative contributions
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of DM fluctuations along the LOS. Pulsars in a pulsar timing array with many

LOSs will see correlated DM variations from the ionosphere and solar wind. As we

have shown with PSR J1909−3744, we can probe the local electron density around

a pulsar after careful determination of its radial velocity.

Differences in DM correction methods will become increasingly important in

the near future. Optimal correction methods must be implemented for the proper

combination of multi-telescope data. By appropriately removing the effects of DM

variations from TOAs, we will be able to maximize pulsar timing array sensitivity.
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4.12 Appendix

4.12.1 Functional forms for Structure Functions of a

Power-Law Wavenumber Spectrum

We will consider the relationships between different SFs of a time-varying DM(t).

By taking the Fourier transform of the first-order increment ∆(1)DM(t, τ) =

DM(t)−DM(t+ τ), we can write the ensemble-average SF in terms of the power

spectrum SDM(f) (see Eq. 15 of Lam et al. 2015),

D
(1)
DM(τ) =

〈[
∆(1)DM(t, τ)

]2〉
= 4

∫
dfSDM(f) sin2(πfτ). (4.62)

A wavenumber spectrum (Eq. 4.17) with spectral index β will be a red noise process

DM(t) with an associated power-law spectrum that scales as SDM(f) = Af−γ

where γ = β − 1 and A is a spectral coefficient. For a wavenumber spectrum in

the scintillation regime (2 < β < 4, 1 < γ < 3), the integral can be solved as

4A

∫ ∞

0

dff−γ sin2(πfτ) = −2AΓ (−[γ − 1]) cos

(
π[γ − 1]

2

)
(2πτ)γ−1, (4.63)

where Γ is the Gamma function (Gradshteyn et al. 2007, Eq. 3.823). We can relate

the spectral coefficient A to the scintillation timescale ∆tISS by equating this to
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Eq. 4.23,

A = − ν2

2(cre)2Γ(−[γ − 1]) cos (π[γ − 1]/2) (2π∆tISS)γ−1 . (4.64)

Therefore, a Kolmogorov wavenumber spectrum with β = 11/3 and a time-series

power-law spectral index of γ = 8/3 will have a SF equal to

D
(1)
DM(τ) = AΓ (−5/3)

√
3(2πτ)5/3 (4.65)

with

A = − ν2

(cre)2Γ(−5/3)
√

3 (2π∆tISS)5/3
, (4.66)

which reduces to Eq. 4.25 when combined. In general, the scintillation timescale

will vary with frequency as ∆tISS ∝ ν2/(β−2), so the SF, proportional to

ν2[∆tISS(ν)]−(β−2), will always be independent of frequency in the scintillation

regime (2 < β < 4) (Lam et al. 2015).

Following a similar procedure using the second-order increment ∆(2)DM(t, τ) =

DM(t− τ)− 2DM(t) + DM(t+ τ), the second-order SF can be written as (Eq. 21

of Lam et al. 2015)

D
(2)
DM(τ) =

〈[
∆(2)DM(t, τ)

]2〉
= 16

∫
dfSDM(f) sin4(πfτ) (4.67)

Using trigonometic identities, we can write sin4(θ) = sin2(θ) − (1/4) sin2(2θ) and

then solve using similar integrals to before. The second-order SF can then be

related to the first-order SF for a power-law spectrum

D
(2)
DM(τ) = −

(
8− 2−γ

)
AΓ (−(γ − 1)) cos

(
π(γ − 1)

2

)
(2πτ)γ−1

=
(
4− 2γ−1

)
D

(1)
DM(τ), (4.68)

which is roughly 0.8252D
(1)
DM(τ) for the Kolmogorov case. This is equal to the

variance of the second-order increments, σ2
∆(2)DM

(τ). Thus, for a pulsar with scin-

tillation timescale ∆tISS(ν) measured at frequency ν, the second-order increments
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at a given τ will be drawn from a Gaussian distribution with standard deviation

σ∆(2)DM(τ) =
[
D

(2)
DM(τ)

]1/2

=
√

4− 2γ−1
[
D

(1)
DM(τ)

]1/2

=
√

4− 2β−2

(
ν

cre

)[
τ

∆tISS(ν)

](β−2)/2

. (4.69)

While Eq. 4.30 has the variance of DM(t) equal to half the DM SF, we note that

the variance of DM increments will be equal to the SF only, which is defined as

the expectation value of the square of the increments.

4.12.2 Structure Function Slope Mis-Estimation from Ad-

ditive Noise

The presence of additive noise will also bias the slope α of a power-law SF, Dx(τ) =

Cτα, for a time series x(t). Assuming for now that a linear trend has been removed,

since the SFs listed above all have the same slope for a Kolmogorov medium, we let

y(t) = x(t) +n(t) be the measured values of a generic, random process, where x(t)

is the random process of interest (e.g., DM variations) and n(t) is the measurement

error with rms σn. The SF of y(t) is then

Dy(τ) = (1− δτ0) 2σ2
n +Dx(τ) (4.70)

where δτ0 is the Kronecker delta. The slope of the SF of y might be used as an

estimate for α. For τ > 0, it can be shown that the estimated slope is

α̂ =
d lnDy(τ)

d ln τ
≡ τ

Dy(τ)

dDy(τ)

dτ
= α

[
τCτα−1

Dy(τ)

]
=

α

1 + 2σ2
n/Dx(τ)

. (4.71)

Therefore, we see that α is always underestimated if the additive noise contribution

to the SF is significant. One method of mitigatng the bias is to use a model for the
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SF that includes a constant term, D̂y(τ) = cτa + b, where estimates of the three

parameters of the least-squares fit would correspond to α, 2σ2
n, and C. It is better

to do the fit in log-log space because the dynamic ranges of τ and Dy(τ) can be

large. The estimated slope α̂ will take a more complicated form if the linear trend

has not been removed.
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Stanimirović, S., Heiles, C., & Kanekar, N. 2007, in ASP Conf. Ser. 365, SINS

- Small Ionized and Neutral Structures in the Diffuse Interstellar Medium, ed.

M. Haverkorn & W. M. Goss (San Francisco, CA: ASP), 22

Stinebring, D. R., Smirnova, T. V., Hankins, T. H., et al. 2000, ApJ, 539, 300

Stinebring, D. 2007, in ASP Conf. Ser. 365, SINS - Small Ionized and Neutral

Structures in the Diffuse Interstellar Medium, ed. M. Haverkorn & W. M. Goss

(San Francisco, CA: ASP), 254

You, X. P., Hobbs, G., Coles, W. A., et al. 2007, MNRAS, 378, 493

You, X. P., Hobbs, G. B., Coles, W. A., Manchester, R. N., & Han, J. L. 2007,

ApJ, 671, 907

173



CHAPTER 5

THE NANOGRAV NINE-YEAR DATA SET: NOISE BUDGET FOR

PULSAR ARRIVAL TIMES ON INTRADAY TIMESCALES

The use of pulsars as astrophysical clocks for gravitational wave experiments

demands the highest possible timing precision. Pulse times of arrival (TOAs) are

limited by stochastic processes that occur in the pulsar itself, along the line of sight

through the interstellar medium, and in the measurement process. On timescales

of seconds to hours, the TOA variance exceeds that from template-fitting errors

due to additive noise. We assess contributions to the total variance from two

additional effects: amplitude and phase jitter intrinsic to single pulses and changes

in the interstellar impulse response from scattering. The three effects have different

dependencies on time, frequency, and pulse signal-to-noise ratio. We use data on 37

pulsars from the North American Nanohertz Observatory for Gravitational Waves

to assess the individual contributions to the overall intraday noise budget for each

pulsar. We detect jitter in 22 pulsars and estimate the average value of rms jitter

in our pulsars to be ∼ 1% of pulse phase. We examine how jitter evolves as a

function of frequency and find evidence for evolution. Finally, we compare our

measurements with previous noise parameter estimates and discuss methods to

improve gravitational wave detection pipelines.

Published: Lam, M. T., Cordes, J. M., Chatterjee, S., et al. 2016, ApJ, 819, 155
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5.1 Introduction

Pulsar timing is used for a variety of unique applications in astrophysics and fun-

damental physics. These include mass determinations of neutron stars (NSs) and

their binary companions to contrain compact object formation mechanisms and

equations-of-state (Demorest et al. 2010; Antoniadis 2013); precision tests of gen-

eral relativity and other theories of gravity (Will 2014); limits on changes in fun-

damental constants (Lazaridis et al. 2009; Shao & Wex 2013; Zhu et al. 2015); and,

especially recently, using arrays of pulsars as detectors of low-frequency (nanohertz)

gravitational waves (GWs; e.g., Arzoumanian et al. 2015a, 2016). Improvements

in the accuracy of measured arrival times continue to yield benefits in these ap-

plications. In this paper, we present a detailed assessment of the time-of-arrival

(TOA) noise budget that is applicable to measurements made on relatively short

timescales, ranging from single pulse periods to integration times of 10 – 104 s.

The work discussed here complements other studies that address noise contribu-

tions from variations in the spin rates of neutron stars (e.g., Hobbs et al. 2010;

Shannon & Cordes 2010), the frequency dependence of pulse shapes (Pennucci et

al. 2014), and from propagation through the interstellar medium (ISM; Armstrong

1984; Blandford et al. 1984; Rickett 1990; Foster & Cordes 1990; Cordes & Shannon

2010).

Pulsar timing relies on a foundation of pulsar phenomena that have been

demonstrated over the nearly half century since pulsars were discovered (see Cordes

2013 for a review). Rotational stability, especially for recycled millisecond pulsars

(MSPs), allows pulse arrival times to be predicted over long time scales so that

small deviations from solar system and astrophysical effects can be determined

(Verbiest et al. 2009). Radio emission beams appear to be locked to the crust of
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the neutron star and single pulses have phases that vary with respect to a fiducial

phase that is also locked to the crust (Kramer 1998; Cordes & Shannon 2010).

Averages of Np single pulses at a specific frequency converge to a stable pulse

shape with fractional deviations ∼ 1/
√
Np, as expected for pulse fluctuations that

are largely statistically independent (e.g., Dolch et al. 2014). While average pulse

shapes do vary with frequency (Kramer et al. 1998), the pulse shapes of radio

pulsars, including those objects having two or more stable shapes associated with

metastable state of the magnetosphere (i.e., the shapes do not show evolution in

time), are stable and show no secular evolution except for a few pulsars in NS-NS

binaries where geodetic precession alters the orientation of the beam (Perera et al.

2010) and in the Crab pulsar in which larges changes in pulse shape are seen over

a few decades (Lyne et al. 2013). Magnetars also show secular changes in pulse

shapes (e.g., Yan et al. 2015).

Intrinsic variations in pulses appear to have stationary statistics (Liu et al.

2011, 2012) in the same way that the average profile formed by averaging a large

number of single pulses converges to a shape that appears to be epoch independent

(see Craft 1970; Backer et al. 1975; Phillips & Wolszczan 1992; Hassall et al. 2012;

Pilia et al. 2015). Consequently, pulse-to-pulse variations can be characterized for

each pulsar and can be incorporated into timing studies that require a noise model,

such as GW detection. Within a Bayesian framework, the average pulse profile and

the pulse variations comprise some of the prior information that underlie modeling

of pulsar orbits and GW detection (van Haasteren et al. 2009; Lentati et al. 2014).

In this paper, we focus on timescales smaller than one day and as short as a

single spin period. Longer time spans require consideration of other phenomena,

including pulsar spin variations and changes in the free-electron content along
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the line of sight. Intrinsic pulse variations comprise only one contribution to the

arrival time variance on short timescales. A second contribution is the template-

fitting error due to additive noise in the measured pulse shape which therefore,

unlike single pulse variations, depends on the signal-to-noise ratio of the average

pulse (Cordes & Shannon 2010). A third contribution is due to changes in the

interstellar impulse response from multipath scattering, which depends strongly

on radio frequency (Cordes et al. 1990). The measured impulse response (or pulse

broadening function, PBF) at a given time is caused by diffractive interstellar

scattering/scintillation (DISS) and it varies as the finite number of constructive

intensity maxima (‘scintles’) appearing in the measurement bandwidth changes.

These white-noise contributions to arrival-time errors are referred to as pulse jitter,

template-fitting errors, and scintillation noise, respectively. They have distinct

correlations with time and frequency that can used to separate them empirically.

In §5.2, we describe the white-noise model. In §6.3, we briefly describe obser-

vations from the North American Nanohertz Observatory for Gravitational Waves

(NANOGrav) and the data sets used in our analysis. We discuss the analysis of

individual objects in §5.4, discuss the collective results in §5.5, and analyze pulse

jitter statistics in MSPs in §5.5.1. In §5.6 we compare our results with the parame-

terized Bayesian noise analysis reported in Arzoumanian et al. (2015b) and discuss

the implications for pulsar timing array (PTA) optimization. We summarize our

conclusions in §6.7.
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5.2 Model for Short-term Timing Variance

We characterize the three white-noise contributions through appropriate analysis

of short (∼ 30 min) timing observations. Typical observing epochs are separated

by several days or weeks, over which time each of the three contributions is un-

correlated, thus appearing as a white-noise perturbation of arrival times, ∆t(ν, t).

The total combined variance of the residuals1 on short timescales is

σ2
R = σ2

S/N + σ2
J + σ2

DISS, (5.1)

where σS/N is the template-fitting error from a finite pulse signal-to-noise ratio

(S/N) primarily due to radiometer noise, σJ is the error due to pulse phase and

amplitude jitter, and σDISS is due to scintillation noise. Spin noise, measurable

over roughly yearly timescales, is negligible over a single epoch, as are changes in

dispersion measure (DM =
∫
dl ne, the integral of the electron density over the line

of sight) and in the mean shape of the PBF (see Appendix 5.9.1 for more details).

For most objects we find σS/N > σJ � σDISS, while a few have σJ & σS/N at some

epochs of high S/N from periods of strong scintillation. Several objects show σDISS

as the dominant timing error at particular radio frequencies (see §5.5).

In the following, we will consider the pulse shape model and individually discuss

the TOA errors resulting from template fitting of finite S/N pulses, jitter, and

scattering.

1Residuals ≡ (data−model), as discussed in §6.3. For the white-noise errors we consider,
there is little difference between the pre-and-post-fit variance. The differences are discussed in
§5.4 and Appendix 5.9.1.
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5.2.1 Pulse Shapes

Radio pulses are subject to a variety of perturbations as they travel between the

pulsar and the Earth. To model the changes in pulse shape and intensity, we will

assume that all chromatic delays have been perfectly removed or are negligible over

each narrowband channel. These include the dispersive delay from DM, scattering,

and frequency-dependent pulse profile evolution. We also assume that the signal

polarization has been calibrated perfectly.

Under these assumptions, we model pulse shapes I(φ, ν, t) as a function of

phase φ obtained in short integrations longer than the pulse period, centered on

time t and in a sub-band centered on frequency ν. The dominant remaining effect

from scattering is the DISS intensity modulation associated with a small number

of scintles in a time-frequency resolution cell. Refractive interstellar scintillation

(RISS) will also modulate the signal strength but typically varies more slowly

than DISS and is broadband (though still chromatic; Stinebring et al. 2000). It

is assumed in the following discussion that we can resolve relevant pulse structure

and scintillation fluctuations though in reality observing practices may not always

allow for scintles to be fully resolved for a given pulsar. We also include a telescope

bandpass function Htel(ν) that lumps together all frequency-dependent gains from

the feed antenna to the output of the digital filterbank channel. The pulse shape

model is then

I(φ, ν, t) = Htel(ν) {gRISS(ν, t)gDISS(ν, t)×

[Si(ν)pi(φ, ν, t) ∗ hPBF(φ, ν, t)] + n(φ, ν, t)} (5.2)

where gRISS is the RISS modulation, gDISS is the DISS modulation, Si is the intrinsic

spectrum of the pulsar, pi is the intrinsic pulse shape normalized to unit area, hPBF

is the pulse broadening impulse response function, and n is additive radiometer
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noise. The intrinsic pulse shape is stochastic and includes contributions from

phase and amplitude jitter. We assume that the time-averaged intrinsic pulse

shape, 〈pi(φ, ν, t)〉t, converges to a pulse template, U(φ, ν), that is stable over long

timescales. The template shape evolves as a slow function of frequency and the

shape of each individual pulse is as well.

5.2.2 Template-Fitting Errors

Template matching yields an rms error in the TOAs that depends on the S/N of

the pulse. We assume for now that the data profile is a scaled and shifted version

of the template with additive noise, the condition for matched filtering to yield the

minimum possible TOA error (Turin 1960; Taylor 1992). This assumption breaks

down when considering pulse phase jitter and the finite scintle effect, which change

the profile dynamically and are discussed in the following subsections. Let U(φ)

be the pulse template as a function of pulse phase φ normalized to unit amplitude,

where we have dropped the explicit frequency dependence. The measured pulse

intensity I(φ) at any epoch is then modeled as

I(φ) = SσnU(φ− φ0) + n(φ), (5.3)

where S is the signal-to-noise ratio of the pulse profile (peak to off-pulse rms,

written this way for clarity as a variable in equations), n(φ) is additive noise with

rms amplitude σn, and φ0 is the TOA. The TOA can be determined either through a

cross-correlation analysis with proper interpolation of the cross correlation function

to find the maximum or by least-squares fitting of the model template to the

data. Mathematically, the two approaches are identical. The peak of the cross-

correlation function (CCF) of the template and pulse profile has a S/N related to
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S as (J. M. Cordes et al. in preparation)

SCCF = S



Nφ−1∑

i=0

U2(φi)




1/2

(5.4)

and is larger by a factor equal to the square root of the effective number of samples

across the pulse if n(φ) is uncorrelated between phase bins. Template matching

will fail when SCCF . 1.

For a pulse template with Nφ phase bins, the template-fitting error is (Cordes

& Shannon 2010)

σS/N =
Weff

S
√
Nφ

, (5.5)

where Weff is an effective width2 given by

Weff =
P

N
1/2
φ



Nφ−1∑

i=1

[U(φi)− U(φi−1)]2




1/2
(5.6)

for a pulsar with period P . We note that for Eq. 5.5, if profiles are smoothed by ns

samples to increase S ∝ n
1/2
S , the effective number of phase bins Nφ ∝ n−1

s , leaving

the product N
1/2
φ S invariant. The effective width is useful because it is unique

to each pulsar-frequency combination and does not depend on any observational

parameters. Therefore, it can be calculated using data obtained from one receiver-

backend system and then the TOA error can be calculated for any value of S/N

and number of phase bins. Any instrumental change, such as a change in Htel(ν)

over time, that alters the pulse shape will have to be taken into account, however.

The expression for σS/N yields the same value as the frequency-domain expression

given by Taylor (1992).

2This is a different definition than given in Cordes & Shannon (2010) although the rms error
expressions are the same.
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The Role of DISS

The finite S/N causes the TOA to have a Gaussian error PDF under the assumption

of the central limit theorem, f∆t(∆t|S) = N (0, σ2
S/N). DISS causes the S/N of the

pulse to be modulated by a scintillation “gain”, g. The gains have an exponential

PDF fg(g) = exp(−g)Θ(g) where Θ(g) is the Heaviside step function (see Appendix

B of Cordes & Chernoff 1997). Multiple scintillation maxima in the time-frequency

plane will alter the PDF, which, given nISS scintles, is

fg(g|nISS) =
(gnISS)nISS

gΓ(nISS)
e−gnISSΘ(g), (5.7)

where Γ is the gamma function. When pulse shapes and TOAs are calculated,

typically nISS & 1 scintles are averaged over the bandwidth and integration time,

decreasing the variations in the scintillation gains.

We can transform the PDF of gains to the PDF of the observable pulse S/Ns

with a change of variable to g = S/S0, where S0 is the mean S/N. The PDF is

written as

fS(S|nISS) =
(SnISS/S0)nISS

SΓ(nISS)
e−SnISS/S0Θ(S). (5.8)

As nISS →∞, fS(S|nISS)→ δ(S − S0), and the pulse S/N will be constant.

The PDF of the TOA errors is

f∆t(∆t|nISS) =
1

σS0

√
2π

(√
2nISS

σS0

|∆t|

)nISS+1

H−(nISS+1)

(
nISSσS0√

2 |∆t|

)
(5.9)

where σS0 is the rms from template-fitting errors when no scintillation occurs (S

is constant) and Hn(x) is a Hermite polynomial of order n. See Appendix 5.9.2

for more details. In general, the distribution of measured S/N, fS(S), will be

a convolution of several distributions, including the distribution of S/N intrinsic

to the pulsar fSint
(S), the DISS modulation fSDISS

(S), and the RISS modulation

fSRISS
(S), which will also affect the distribution of TOA errors.
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Example of a Single-Component Gaussian Pulse

For a Gaussian pulse having width W (FWHM), the effective width (using Eq. 5.6)

is

Weff =
(WP )1/2

(2π ln 2)1/4
(5.10)

For this case, the effective width is proportional to the geometric mean of the

period and actual pulse width. The TOA error is

σS/N =
(WP )1/2

(2π ln 2)1/4N
1/2
φ S

=
W

2 (ln 2)1/2 SCCF

, (5.11)

where we have used Eq. 5.4 to calculate

SCCF =
S

2

(
2π

ln 2

)1/4(
WNφ

P

)1/2

≈ 5.55

[(
W/P

0.02

)(
Nφ

2048

)]1/2

S. (5.12)

The quantity W/P represents the fiducial duty cycle for an MSP. SCCF must be of

order unity or larger for template matching to fit appropriately.

5.2.3 Single Pulse Amplitude and Phase Variations

(“Jitter”)

Single pulses of both canonical pulsars and MSPs have been shown to have stochas-

tic amplitude and phase variations (Cordes & Downs 1985; Cordes et al. 1990; Liu

et al. 2012; Shannon & Cordes 2012; Shannon et al. 2014; Dolch et al. 2014). When

averaged over Np pulses to form a pulse profile, pulse jitter causes the underlying

pulse shape to differ from that of the template, causing an error that is qualitatively

different from additive noise. The jitter TOA error is independent of S/N. We
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define a dimensionless parameter kJ ≡ σJ,1/P as the ratio of rms phase variation

of individual pulses σJ,1 = σJ

√
Np (in time units) to the period P of the pulsar.

Cordes & Downs (1985) and Cordes & Shannon (2010) define a jitter parameter

fJ = σJ,1/σU , where σU is the equivalent rms width of the template. Since pulse

profiles often display multiple components with potentially different jitter statis-

tics, using kJ to compare the intrinsic jitter between pulsars is less dependent on

the properties of the different components.

We note that single-component pulses that show phase variations only will have

an rms jitter but those that show amplitude variations only will not display jitter.

However, for pulses with multiple components, amplitude variations without phase

variations will yield an rms jitter but only if the components overlap in pulse phase.

An in-depth analysis on the role of multiple components in jitter will be presented

in J. M. Cordes et al. (in preparation). As an example, we consider a single

component, Gaussian-shaped pulse with both a Gaussian phase jitter PDF with

dimensionless phase variations kJ,c and amplitude variations with a modulation

index mI,c (defined as rms intensity divided by mean pulse amplitude). We use the

subscript ‘c’ to explicitly denote that the parameters describe the single component,

whereas the parameter kJ is defined as the overall timing variation of the pulse.

The TOA error is then (modified from the form in Cordes & Shannon 2010)

σJ =
kJP√
Np

= kJ,cP

(
1 +m2

I,c

Np

)1/2

. (5.13)

Comparing the TOA errors from additive noise and jitter in Eqs. 5.5 and 5.13,

we can define a transition S/N at which the two contributions are equal, σS/N = σJ.

The single-pulse S/N implied by a profile calculated from Np pulses, assuming

statistical independence of jitter between pulses, is S1 = N
−1/2
p S. For a Gaussian-

shaped pulse, we find the single-pulse transition S/N, by setting Eqs. 5.11 and 5.13
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equal when Np = 1, to be

S1,trans = k−1
J,c

(
W

P

)1/2

(2π ln 2)−1/4 [Nφ

(
1 +m2

I,c

)]−1/2

≈ 0.216

(
kJ,c

0.007

)−1(
W/P

0.02

)1/2(
Nφ

2048

)−1/2(1 +m2
I,c

2

)−1/2

(5.14)

and the corresponding S/N of the CCF is

SCCF1,trans ≈ 1.20

(
kJ,c

0.007

)−1(
W/P

0.02

)(
1 +m2

I,c

2

)−1/2

, (5.15)

where we set the fiducial kJ = kJ,c(1 + m2
I,c)

1/2 = 0.01 based on our analysis in

§5.5.1. When the single-pulse cross-correlation S/N is greater than about unity,

the jitter error becomes larger than the template-fitting error.

The same pulsar-intrinsic effects that cause frequency-dependent template evo-

lution will cause jitter to be a slow function of frequency as well. Over an observing

band, we might approximate jitter as being frequency-independent (see Shannon

et al. 2014 for evidence of decorrelation over widely-separated frequencies) but

frequency-dependence of the pulse template can be measurable (Pennucci et al.

2014; Dolch et al. 2014). We therefore note that jitter will be strongly correlated

in frequency but not in time. DISS has a correlation bandwidth and timescale

that can vary widely from pulsar to pulsar and between epochs for the same pul-

sar. Template-fitting errors are uncorrelated between time samples and frequency

sub-bands.

5.2.4 Scintillation Timing Noise: Finite Scintle Effect

The time-frequency plane is made up of independent intensity fluctuations called

scintles that are 100% modulated and have characteristic time and frequency scales
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∆td and ∆νd, respectively. The scintillation structure is related to the temporal

broadening of pulses, resulting in a time delay (Cordes et al. 1990; Cordes &

Shannon 2010). Since a finite number of scintles will occupy the time-frequency

plane, the instantaneous PBF will be different from the ensemble average shape.

This produces an error that is statistically independent between two epochs and

is therefore white noise in time.

The number of scintles for an observation of duration T and bandwidth B is

approximately

nISS ≈
(

1 + ηt
T

∆td

)(
1 + ην

B

∆νd

)
. (5.16)

The filling factors ηt,ην are less than unity and are in the range of 0.1 to 0.3

(Cordes & Shannon 2010; Levin et al. 2016), depending on the definitions of the

characteristic timescale and bandwidth.

When nISS is large, the TOA error is

σDISS ≈
τd√
nISS

(5.17)

where τd = C1/(2π∆νd) is the scattering timescale with C1 a coefficient of order

unity. For a thin scattering screen with uniscale irregularities, C1 = 1 but for a

Kolmogorov screen, C1 = 0.96. For uniform, thick media, C1 = 1.53 and 1.16,

respectively, for uniscale and Kolmogorov media (Cordes & Rickett 1998). When

there is only one scintle or a partial scintle across the band, the TOA error is

approximately τd, or some fraction of it.
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Table 5.1. Errors in Initial Timing Model

Effect Typical Appendix Comments
∆t Section

Pulse profile smearing
spin period error .10 ps A.1.1 systematic
binary parameter errors .10 ns A.1.2 systematic
DM variations .400 ns A.1.3 stochastic
polarization calibration gain errors .1 µs A.1.4 stochastic
Deviations from the polynomial fit
binary orbit parameter errors .10 ps A.2.1 systematic
ionospheric DM variations .1 ns A.2.2 stochastic
cross-coupling errors ? A.2.3 systematic, highly

pulsar-dependent
rotation measure (RM) variations .1 ps A.2.4 stochastic
spin noise .0.1 fs A.2.5 stochastic
stochastic GW background .1 fs A.2.6 stochastic

5.3 Observational Data

5.3.1 NANOGrav Timing Observations

We used pulse profile data from the NANOGrav nine-year data set described in

Arzoumanian et al. (2015b, hereafter NG9) for our analysis. NG9 contains multi-

frequency pulse profiles of thirty-seven MSPs observed at the Green Bank Telescope

(GBT) and Arecibo Observatory (AO). Two generations of backends were used,

the GASP/ASP backend earlier, processing up to 64 MHz (Demorest 2007; De-

morest et al. 2013), and the GUPPI/PUPPI backends later, processing 100, 200,

or 800 MHz of bandwidth (DuPlain et al. 2008; Ford et al. 2010). The larger band-

width of GUPPI and PUPPI yields an increase in S/N from increased averaging of

radiometer noise combined with a higher probability for large scintillation maxima
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(Pennucci et al. 2014). Because we wish to maintain homogeneity of the inferred

parameters of our pulsars (e.g., consistent scintillation statistics), we analyze pulses

observed with GUPPI/PUPPI only.

Each pulsar was observed at each epoch with at least two receivers. At GBT,

the 820 and 1400 MHz bands were used, and at AO, the 430 and 1400 MHz or

1400 and 2300 MHz bands were used. PSRs B1937+21 and J1713+0747 were ob-

served at both AO and GBT and we analyze both observatories’ data sets indepen-

dently to check for consistency across varying S/Ns. In addition, PSR J2317+1439

contained data from the 327 MHz band in addition to the 430 and 1400 MHz

bands. We also used processed 430 MHz data available for PSRs B1937+21 and

J2017+0603 though they were not included in NG9.

Pulse profiles were computed in real time by averaging together single pulses

according to an initial timing model that includes the pulsar’s spin kinematics and

the orbital motions of the Earth and, if needed, the pulsar binary orbit. Model

parameters were obtained by fitting to earlier observations. Raw data profiles from

GUPPI/PUPPI were folded and de-dispersed in ∼ 10 s and ∼ 15 s subintegrations

at AO and GBT, respectively, and every eight subintegrations were averaged to-

gether to reduce data volume through the NG9 pipeline. Some Arecibo 1400 MHz

observations were initially recorded in ∼ 1 s subintegrations to aid in radio fre-

quency interference (RFI) excision and then combined to form the ∼ 10 s “raw”

subintegrations. Observations for a given epoch typically spanned about 0.5 hr.

All profiles were divided into 2048 phase bins.

Arzoumanian et al. (2015b) describe the polarization calibration algorithm,

as well as the RFI excision methods, for creating calibrated data profiles using
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the psrchive3 software package (Hotan et al. 2004; van Straten et al. 2012).

A broadband noise source was locally injected into the two polarization signal

paths at each observatory prior to every pulsar observation and is recorded by

the backend systems. Both differential gain and phase between the two hands of

polarization were calibrated using the correlated noise source observation. The

noise source power in each hand of polarization was not assumed to be equal and

was measured separately roughly once per month per telescope per frequency by

observing the noise source after pointing on and off a bright, unpolarized quasar.

After balancing the gains of the two orthogonal polarizations, the intensity profiles

were produced by summing the two polarization profiles. Future papers will discuss

the complete polarization and flux calibration solutions at AO and GBT. Frequency

channels known to consistently contain RFI signals were removed first. If the off-

pulse variation in a 20-channel wide frequency window was four times the median

variation value, those channels were also removed.

We took the calibrated profiles with ∼ 80 s (AO) and ∼ 120 s (GBT) subinte-

gration lengths and average the profiles together into sub-bands of 50 MHz reso-

lution. Frequency-averaging builds S/N for each pulse to avoid mis-estimation of

the TOA in the low-S/N limit (see Appendix B of Arzoumanian et al. 2015b). We

note that frequency-dependent profile shape changes across the entire observing

band can be significant for some sources over the full band (e.g., see Pennucci et

al. 2014) but are small over a 50 MHz channel.

We implemented a Fourier-domain TOA estimation algorithm (Taylor 1992)

that determines the amplitude Sσn, the TOA, and template-fitting uncertainty

of an intensity profile I(φ, ν, t). Template shapes U(φ) are determined from de-

3http://psrchive.sourceforge.net, accessed via scripts available at https://github.

com/demorest/nanopipe
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noised average profiles, smoothed by thresholding the coefficients of a wavelet

decomposition of the pulse shape. One template is generated from all data for each

pulsar, backend, and frequency band combination4 . Timing offsets from profile

frequency evolution are not accounted for here but will be accounted for in the

analysis in the following section. We determined the off-pulse window for each

pulse template used to measure σn by finding the rolling eighth (256 out of 2048

phase bins) of phase that has the smallest integrated intensity. The pulse baseline is

defined as the mean of the off-pulse region and the noise σn is the rms amplitude of

the region. Once we knew the best-fit amplitude and rms noise, we then calculated

the associated S/N for each pulse. Our code is freely available in the PyPulse

software package5 .

5.3.2 Scintillation Parameters

Scintillation bandwidths and timescales were taken or estimated (using the scal-

ing relations as a function of observing frequency in Cordes & Lazio 2002) from

Keith et al. (2013) and Levin et al. (2016) and references therein. We used these

measurements to derive values of σDISS given by Eq. 5.17 assuming ην = ηt = 0.2,

C1 = 1 (Lambert & Rickett 1999; Cordes & Shannon 2010; Levin et al. 2016),

and integration time/bandwidth values equal to that of the profiles from each tele-

scope. When scintillation parameters were not available, we estimated all other

values using the NE2001 electron density model (Cordes & Lazio 2002).

4Templates are available in the NG9 data release at https://data.nanograv.org
5https://github.com/mtlam/PyPulse

190

https://data.nanograv.org


5.4 Single Pulsar Analysis

We are interested in quantifying noise on intraday timescales. We therefore in-

dependently analyze individual NANOGrav observations, typically of duration

30 min or less. During an observation, the incoming data were folded using a pre-

computed model pulsar ephemeris. We assumed that this ephemeris is sufficiently

accurate that there is very little drift in pulse arrival times over an observation. We

calculated pulse phases within an observation, “initial timing residuals” δt(ν, t),

using the Fourier-domain estimation algorithm of Taylor (1992). We assumed that

the initial timing model used for folding will yield polynomial expansions of phase

and spin period that represent the state of the Earth-pulsar line of sight at a given

epoch to high accuracy. We also assumed that the initial timing model is accurate

such that pulse smearing will be negligible for our subintegration lengths. We then

calculated “short-term” residualsR(ν, t) over a single observation by fitting a poly-

nomial model over all δt(ν, t) observed that includes a constant offset for TOAs

from each frequency channel and a parabolic fit in time common to all TOAs. The

initial and short-term models can be written as

δt(ν, t) = K(ν) + at+ bt2 + n(ν, t) (5.18)

R(ν, t) ≡ n̂(ν, t) = δt(ν, t)−
[
K̂(ν) + ât+ b̂t2

]
. (5.19)

Here, a and b are frequency-independent coefficients, n(ν, t) is additive noise in

both time and frequency that includes the three white-noise components in Eq. 5.1,

and K(ν) represents a constant offset that varies with frequency, resulting from

pulse profile evolution or epoch-dependent dispersion and scattering. Variables

with carets denote estimated quantities. Thus, R(ν, t) is the estimated additive

noise, calculated by subtracting the estimated model parameters from the TOAs.

We assumed that subtraction of the offsets removes any frequency-dependence
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between sub-bands. The variance removed by the fit for a, b, and K(ν) to obtain

R(ν, t) will be small for white-noise components that are uncorrelated in time.

Differences between the initial timing model and the short-term timing model

for a given epoch can result from a number of possible effects that we account for

with the quadratic fit in Eq. 5.19. Table 5.1 lists the effects and their approximate

amplitudes. We provide details of the estimates in Appendix 5.9.1.

5.4.1 An In-Depth Analysis of Jitter and Frequency-

dependent Jitter Evolution in PSR J1713+0747

PSR J1713+0747 is not only one of the best-timed pulsars but it is the pulsar with

the highest S/N pulses in our entire data set and is thus most sensitive to jitter

error. The S/N peaked at S ≈ 2000 at 1400 MHz for one of two observations on

MJD 56380. Figure 5.1 shows the residuals of sub-bands for that observation in

panel (a); strong correlation between sub-bands is evident and indicative of pulse

jitter (Cordes & Shannon 2010; Shannon et al. 2014). Along with the ∼ 80 s

data, we processed the ∼ 10 s subintegration raw data from this observation to

demonstrate the lack of temporal correlation in the residuals, shown in panel (b),

as expected when jitter noise becomes dominant. The results in Figure 5.1 are

presented with the 80 s subintegrations displayed in the left panels and the 10 s

subintegrations on the right.

Within each subintegration, we typically saw a monotonic increase or decrease

in the residual with frequency, which is most evident in the second-to-last subin-

tegration of the low-time-resolution residuals, highlighted with a black arrow in

panel (a). Each line in panels (c) and (d) shows the residuals as a function of
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Figure 5.1: Analysis of jitter in residuals for the highest S/N epoch for PSR
J1713+0747. The panels on the left side show the analysis for the ∼ 80 s subin-
tegration data while the panels on the right side are for the ∼ 10 s subintegration
data. Panel (a): Low-time-resolution residuals as a function of time. Each fre-
quency channel is shaded differently, with darker lines indicating lower frequencies.
The arrow indicates the subintegration with the greatest change in residual versus
frequency. Typical TOA errors are shown in the top left of panels (a)-(d). Panel
(b): High-time-resolution residuals as a function of time, where we have plotted
residuals as points for clarity. Panels (c),(d): Residuals as a function of frequency,
where each line represents one subintegration. The thick, black line in panel (c)
corresponds to the subintegration highlighted with the arrow in panel (a). Panels
(e),(f): Slopes of fitted lines to the residuals versus frequencies for each subin-
tegration. The horizontal, dotted lines indicate the median fitting error. Panels
(g),(h): Autocorrelation functions (ACFs) of the time series in panels (e) and (f),
respectively.
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frequency for each subintegration. The subintegration highlighted with the arrow

in panel (a) is marked with a thick, black line in panel (c) and demonstrates the

trend increasing with frequency. We fit the slope of each line and plot the results in

panels (e) and (f). The slope values show a deviation much larger than the median

of the fitting errors, denoted by the dotted, horizontal lines. While the points in

the time series in panel (e) appear correlated, they do not in panel (f), suggesting

the slope changes are uncorrelated. The autocorrelation functions (ACFs) of the

time series in panels (e) and (f) are shown in panels (g) and (h), respectively, and

the flatness at non-zero lags demonstrates that the slope changes are consistent

with uncorrelated, white noise in time.

The roughly monotonic slope of the residuals with frequency in each subintegra-

tion indicates that there is a systematic variation of the pulse shape for each subin-

tegration (and thus TOAs) versus frequency, indicative of frequency-dependent jit-

ter evolution, which is distinctly different from frequency-dependent pulse profile

evolution, though related. These slopes are uncorrelated between subintegrations,

indicating that longer averages of larger numbers of pulses will show less varia-

tion with frequency. Nonetheless, it is known that the average pulse shape of PSR

J1714+0747 varies systematically with frequency (Arzoumanian et al. 2015b; Dolch

et al. 2014) and those must reflect the variations occurring on the single-pulse level.

For the high-time-resolution data, the rms slope is ≈ 0.53 µs/GHz.
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5.4.2 Distributions of Residuals from Jitter and Scintilla-

tion

We modeled the variance in the residuals separately for each pulsar/backend/fre-

quency band combination using Eq. 5.1. While all three terms scale as N−1
p , only

the template-fitting term depends on the S/N of the pulse profile whereas the jitter

and the DISS terms do not. Therefore, we used a one-parameter model for the

variance as a function of S/N,

σ2
R(S) = σ2

S/N(S) + σ2
C =

(
Weff

S
√
Nφ

)2

+ σ2
C. (5.20)

where σ2
C = σ2

J + σ2
DISS, as implied by Eq. 5.1, is the variance that is constant in

S/N. At high S/N, σS/N → 0 and σ2
C becomes the dominant term. We took the

scintillation parameters to be constant for all epochs so that σDISS is fixed, though

measurements of these parameters indicate small variations (factor of . 2) over

many years, with some pulsar showing larger fluctuations (e.g., Coles et al. 2015).

The observed S/N PDF depends on the intrinsic pulse amplitude distribution,

on modulations from DISS and RISS, and on variations of the system equivalent

flux density (SEFD) of the receiver. We assumed that the average intrinsic flux

density of the pulsar and SEFD were constant over all times. Therefore, the

mean S/N, S0, is constant for our many-period pulse averages (large Np), i.e.,

fS0(S) = δ(S−S0), assuming that changes in the S/N are due solely to modulation

from DISS. RISS has been shown to change the observed flux density by a factor

of . 2 on the timescale of 10s of days (Stinebring et al. 2000). Since we observed

S/N variations spanning over an order of magnitude from the mean in some cases,

we ignored the contribution to the S/N PDF from RISS.
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We assumed that residuals at a given S/N follow a Gaussian distribution

fR|S(R|S, σC) =
1√

2πσ2
R
e−R

2/(2σ2
R), (5.21)

where again σR is a function of both S and σC (Eq. 5.20). The normality assump-

tion is a good approximation due to the fact that while residuals must lie within

one cycle of pulse phase, |R| . 0.001P and deviation from a Gaussian distribution

is negligible. We removed all residuals with S < 100.5 (≈ 3) to avoid contamination

by low-significance noise being fit by the template matched filtering (see Appendix

B of Arzoumanian et al. 2015b), which excluded five pulsar/backend/frequency

band residual sets and two pulsars from our analysis entirely. We excised evident

RFI beyond the methods described in §6.3 by inspection of the residuals and the

corresponding pulse profiles.

We performed a maximum likelihood (ML) analysis over the residuals {Si, Ri}

given the three parameters S0, nISS, and σC. To include our cut in S/N, we

included a parameter Smin and determined the factor that properly normalizes the

distribution in S. The normalized distribution is

fS(S|S0, nISS, Smin) = fs(S|S0, nISS)Θ(S − Smin)
Γ(nISS)

Γ(nISS, nISSSmin/S0)
, (5.22)

where Γ(α, x) is the incomplete Gamma function and Γ(α, 0) = Γ(α) (see

Eqs. 3.381.3-4 of Gradshteyn et al. 2007, for the relevant integrals).

The likelihood function can be calculated by combining Eqs. 5.7, 5.21, and 5.22,

L(S0, nISS, σC|{Si, Ri}, Smin) =
∏

i

fR,S(Ri, Si|S0, nISS, σC, Smin)

=
∏

i

fR|S(Ri|Si, σC)fS(Si|S0, nISS, Smin), (5.23)

where i labels the individual residuals. We performed a grid search in the three-

dimensional parameter space to estimate the values and uncertainties on the three
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model parameters. The likelihood function can be expressed as the product of

individual likelihoods

L(S0, nISS, σC|R, S, Smin) = L(σC|R, S, Smin)L(S0, nISS|S, Smin), (5.24)

so that we could perform the grid search in σC independently from the search in

S0, nISS space. We limited our search in nISS with a lower bound of 1 so that

the minimum number of degrees of freedom across both the time and frequency

dimensions is 2 (Cordes & Chernoff 1997), or that each pulse must come from

at least one ray path through the ISM. An F-test was used to determine the

significance of σC with a significance value of 0.05 (i.e., 2σ significant). If not, we

computed the 95% upper limit on σC.

Figure 5.2 shows the results for one of NANOGrav’s best-timed pulsars, PSR

J1713+0747 observed at 1400 MHz at AO. The top panel shows the residuals

Ri(Si) with the ±3σR ranges plotted in the blue lines. At higher S/N, the rms

of the residuals asymptotes to a constant value, σC, represented by the constant

width scatter of points, and is indicative of jitter and scintillation noise and the

S/N regime over which they dominate the template-fitting error. A histogram

of the residuals Ri are shown at right with bins ∆R = 0.1 µs and a histogram

of Si with logarithmic bins of ∆ log10 S = 0.0625 is shown below with Poisson

uncertainties shown by the error bars. We plot SfS(S|S0, nISS, Smin) in the middle

panel to properly compare the scaled PDF to the logarithmically binned histogram,

with S0 and nISS determined in the ML analysis.

The bottom panel shows the rms residual for the same logarithmic binning of

the data. The dashed line shows the predicted rms from template-fitting error only

given by Eq. 5.5. We emphasize that the dashed line is not a fit to the data points

in this plot. We see agreement between the dashed line and the points at low S/N
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Figure 5.2: Analysis of residuals for PSR J1713+0747 observed at 1400 MHz with
AO, containing the highest S/N residuals in our sample. Top: Residuals R vs S/N.
The solid lines (blue) show the ±3σR(S) ranges from the maximum likelihood
analysis. The inset shows the residuals for S/N greater than 70% of the maximum.
Histograms of R (right panel) and S/N (middle panel) are shown, with the solid
(blue) lines showing the predicted histogram given the most-likely estimates for S0

and nISS. The error bars show the standard Poisson uncertainties for each bin only.
Bottom: rms residual σR in bins of S/N. The dashed line is the predicted TOA
template-fitting error (not a fit to the points on the graph) based on the template
shape while the solid line shows the estimated σR(S) from Eq. 5.20 that includes
a S/N-independent term.

for most pulsars, which indicates that Eq. 5.5 represents the template-fitting noise

well. Deviation from the line can be explained by other systematic effects that can

increase the variance, such as remaining RFI in the data. The blue line shows the

best estimate σR(S) from the ML analysis. We note that the ML analysis is less

susceptible to parameter mis-estimation from the effects of RFI in the data over
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Figure 5.3: Analysis of residuals for PSR J1909−3744 observed at 1400 MHz with
GBT. See the Figure 5.2 caption for more details.

a fit of Eq. 5.20 to the rms residual points because the ML analysis fits all of the

data simultaneously.

Figures 5.3-5.6 show the same ML analysis for four other pulsars observed at

1400 MHz. While σR matches the data for PSR J1909−3744, the S/N histogram

does not match well with the data and the PDF of nISS in the ML analysis peaks

at the edge of the sampling space (nISS = 1), expected since ∆νd = 39± 14.7 MHz

and ∆td = 2258 s for the pulsar at a reference frequency of 1500 MHz (Keith

et al. 2013; Levin et al. 2016), of order the pulse channel bandwidth and typical

total observation length. We see a similar result with PSR J2317+1439 though
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Figure 5.4: Analysis of residuals for PSR J2317+1439 observed at 1400 MHz with
AO. See the Figure 5.2 caption for more details.

sparseness in the S/N histogram is a result of increased RFI excision for the pulsar.

For PSR B1937+21, the S/N histogram is well described by the result of the ML

analysis. The remaining low S/N residuals (S/N ∼ 10) are spurious noise spikes

that pass our S/N cut criterion and lie close to the main pulse in phase. The

narrowing of residuals at large S/N is not understood and may require further

investigation of this pulsar. Lastly, we show the analysis for PSR J1918−0642 as

a typical pulsar with an upper limit on σC.

To measure jitter values, we estimated σDISS as described in the previous sec-

tion for 50 MHz sub-bands and subintegrations of length tsub and then solved for
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Figure 5.5: Analysis of residuals for PSR B1937+21 observed at 1400 MHz with
AO. See the Figure 5.2 caption for more details.

σJ given our measured σC (see Eq. 5.20). In several cases, the estimates of the

scintillation noise from Eq. 5.17 were larger than the σC estimated from the ML

analysis, which is supposed to encapsulate all possible variance at high S/N. We

employed a correlation analysis described in the next sub-section to separate the

jitter and scintillation noise values for PSR B1937+21 at 1400 MHz, the only pul-

sar where the estimated σDISS is larger than σC and the S/N of the residuals is

high enough to perform such an analysis.
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Figure 5.6: Analysis of residuals for PSR J1918−0642 observed at 1400 MHz with
GBT. See the Figure 5.2 caption for more details. The 95% upper limit on σC is
shown in the bottom left of the bottom panel, with the corresponding σR in blue.

5.4.3 Cross-Correlation Analysis Between Frequencies

Jitter causes simultaneously measured residuals at different frequencies to be cor-

related, which allows us to distinguish jitter noise from template-fitting noise. If

the sub-band bandwidth is & ∆νd, the residuals will not be correlated in frequency

by DISS and we can distinguish jitter noise from scintillation noise as well. PSR

B1937+21 has ∆νd = 2.8 ± 1.3 MHz and ∆td = 327 s at a reference frequency

of 1500 MHz (Keith et al. 2013; Levin et al. 2016) and therefore residuals with

50 MHz of bandwidth will be correlated in frequency due to jitter only. We find

nISS ≈ 4 for PSR B1937+21 observed at 1400 MHz at AO with 50 MHz sub-bands
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Figure 5.7: Correlation analysis for PSRs J1713+0747 (top) and B1937+21 (bot-
tom) at AO (left) and GBT (right) for 1400 MHz band residuals. The gray points
mark the correlation coefficient ρ of two different sub-bands of residuals on a given
epoch as a function of the geometric average of the mean S/N of the pulse profiles

for those sub-bands as (〈S1〉 〈S2〉)1/2. We show the median ρ in bins of S/N in
black. The blue line marks the best-fit ρ(S) to the black points.

and ∼ 80 s subintegrations. Therefore, the finite scintle effect is prominent and we

expect scintillation noise to be large for this pulsar.

We let the total residual be the sum of the fluctuations from the three contri-

butions to white noise,

R(ν, t) = RS/N(ν, t) +RJ(ν, t) +RDISS(ν, t), (5.25)

where the subscripts denote the specific contribution. The cross-correlation coef-

ficient between residuals from two sub-bands νi and νj is

〈R(νi, t)R(νj, t)〉 = σ2
J, (5.26)
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where we assumed that the scintles are statistically independent between sub-bands

for PSR B1937+21 and therefore do not correlate. The autocorrelation coefficient

〈R(νi, t)
2〉 reduces to the variance in Eq. 5.1 plus cross terms that tend towards zero

in the ensemble average limit. The correlation coefficient ρ is the autocorrelation

coefficient divided by the square root of the cross-correlation coefficients between

sub-bands, which we assumed to be identical within a single band. Therefore,

ρ(S) =
σ2

J

σ2
R(S)

(5.27)

and is a function of pulse S/N. Since we calculated ρ from residuals whose corre-

sponding profiles differ in S/N, we took the average S/N for the profiles in a given

sub-band and used the geometric mean (〈Si〉 〈Sj〉)1/2 as a proxy for pulse S/N.

Figure 5.7 shows the correlation coefficients (gray) as a function of S, computed

over all epochs observed at 1400 MHz for PSRs J1713+0747 (top) and B1937+21

(bottom) at AO (left) and GBT (right). Since PSR J1713+0747 has σJ ≈ σC and

high-S/N, we show the results of our correlation analysis to demonstrate how the

method performs before applying it to PSR B1937+21. The black points show the

median ρ with linear bins in S/N each increasing by 10. The blue lines show the

best fit of Eq. 5.27 to the black points via a grid search in σJ, holding σR fixed

from the ML analysis. Each panel shows σJ as a fraction of σC as well as the

single-pulse rms σJ,1, which accounts for the differences in tsub between telescopes.

The errors include both errors on σC and errors from the fit.

For PSR J1713+0747, we find consistency of σJ,1 between AO and GBT, with

σJ,1 = 23.3±0.5 µs, 22.5±0.7 µs, respectively, which demonstrate a good check of

the methods used in this paper. These values are generally consistent with, though

somewhat lower than, measurements reported elsewhere. Dolch et al. (2014) report

a measurement of jitter though their method includes the contribution from σDISS.
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They find σC,1 = 27.0 ± 3.3 µs, though we note that the σDISS contribution is

not well-defined at the single-pulse level. Shannon & Cordes (2012) find σJ,1 ≈

26 µs from a cross-correlation analysis between frequency bands. Shannon et al.

(2014) find σC,1 = 31.1 ± 0.7 µs (again including the contribution of σDISS) by

adding Gaussian noise to the template, generating residuals, and subtracting the

quadrature difference from the observed residuals. Even accounting for the small

contribution from σDISS, their measurement formally disagrees with ours for reasons

that are uncertain.

For PSR B1937+21, σDISS is comparable to the predicted values from the scaling

relation (Eq. 5.17) for both AO and GBT at 1400 MHz. Differences between

the estimated σJ,1 between telescopes come from differences in the estimated σC

whereas the ratio of rmss σJ/σC is consistent between the measurements at both

observatories. Since the GUPPI observations span more years than the PUPPI

observations (∼ 3.6 yr versus ∼ 1.6 yr, respectively), if the scintillation parameters

differed in the first half of the GUPPI observations than the second half when

PUPPI ran in coincidence, then the average σDISS would differ between the two

sets of observations. The small scintle size at 1400 MHz means that we are unable

to study the scintillation properties of this pulsar with the current NANOGrav

data set.

5.5 Summary Results

Figures 5.8 and 5.9 show the results for the three white-noise contributions to the

timing residuals per frequency band per pulsar. We performed the ML analysis

independently for observations of PSRs J1713+0747 and B1937+21, which were
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J2043 + 1711 2.38
J1741 + 1351 3.75
J1640 + 2224 3.16
J1910 + 1256 4.98
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J0023 + 0923 3.05
J1923 + 2515 3.79
J0030 + 0451 4.87
J2214 + 3000 3.12
J1903 + 0327 2.15
J1643− 1224 4.62
J1738 + 0333 5.85
J0340 + 4130 3.30
J0613− 0200 3.06
J1853 + 1303 4.09
J1944 + 0907 5.18
B1953 + 29 6.13
J2145− 0750 16.05
J0645 + 5158 8.85
J1012 + 5307 5.26
J0931− 1902 4.64
J1949 + 3106 13.14
J1614− 2230 3.15
J1918− 0642 7.65
J1455− 3330 7.99
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J2010− 1323 5.22
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10−3 0.01 0.1
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Figure 5.8: Summary of white-noise components for pulsars observed at the
two highest frequency bands. The middle panel shows the three contributions,
template-fitting noise as black circles (AO) or crosses (GBT), jitter noise as blue
dots, and estimated DISS noise as red triangles. We observed PSRs J1713+0747
and B1937+21 with both telescopes and plot the separate analysis for each. The
template-fitting and jitter contributions are for a 50 MHz bandwidth but scaled
to a 30 min observating time. The gray bands represent the template-fitting noise
scaled to the full receiver bandwidth to show the relative contribution with respect
to jitter in a given NANOGrav observation. The DISS noise has been scaled to a
30 min observation and the appropriate total bandwidth for each band. Within
each band, pulsars are ordered by increasing template-fitting noise (ordered by
black points, not gray bands). The rightmost panel shows the single-pulse rms
jitter divided by the period of the pulsar, kJ. For PSR B1937+21, the upside-
down triangles indicate the measured DISS noise from the correlation analysis (see
§5.4.3). The bold lines for PSR J1903+0327 at 1400 MHz indicates an upper limit
on σC inconsistent with the estimate of σDISS (recall that σDISS has been scaled to
the total bandwidth and a 30 min observing time and so appears smaller in the
plot).
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J0645 + 5158 8.85
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J1643− 1224 4.62
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J2043 + 1711 2.38
J0023 + 0923 3.05
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B1953 + 29 6.13
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10−3 0.01 0.1
kJ = σJ,1/P

Figure 5.9: Summary of white-noise components for pulsars observed at the three
lowest frequency bands. See the caption for Figure 5.8 for information. The
bold upper limit lines for PSRs J1600−3053 and J1643−1224 at 820 MHz and
J1640+2224 at 430 MHz, indicate an upper limit on σC inconsistent with the
estimated σDISS.

observed at both telescopes. For each frequency band, the pulsars are ordered

in increasing amounts of template-fitting noise. Template-fitting noise values are

calculated using Eq. 5.5 and using the median and 68.3% confidence limits from

the PDFs of S/N for each pulsar. Jitter values are also 68.3% confidence intervals

or upper limits at the 95% level. DISS noise is calculated through scattering mea-

surements as discussed in §6.3 and according to Eq. 5.17. We scale the observation

time T to 30 min and the bandwidth B equal to that of each receiver in NG9 (see

Table 1 of Arzoumanian et al. 2015b).

To compare numbers expected over the length of a typical NANOGrav obser-

vation, we scaled all three contributions to 30 min. We multiplied the mean S/N,

S0 (see Eq. 5.7), by a factor of
√

30 min/tsub, where tsub is the subintegration
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time for either GBT (∼ 120 s) or AO, (∼ 80 s) to find the 30 min S/N for use in

Eq. 5.5. Because the scintillation timescales are of the order of the typical observa-

tion length or longer for most of these MSPs (Levin et al. 2016), the simple scaling

relation of Eq. 5.16 will hold on average though not exactly since the number of

scintles in the time dimension is restricted. The scintillation noise term was scaled

up in time and frequency using Eq. 5.17. The gray band shows the template-fitting

error scaled to the full bandwidth B by a factor of
√

50 MHz/B. The rightmost

panel shows the jitter parameter kJ = σJ,1/P .

The raw values from our analysis are reported in Table 5.2. In Table 5.3, we

convert all three white-noise contribution measurements to 30 min TOA uncer-

tainties and rank the pulsars according to each contribution and to the total white

noise per frequency band (thus matching Figures 5.8 and 5.9).

5.5.1 Pulse Jitter Statistics

The preceding analysis provides detections of σJ for over half of the NANOGrav

pulsars for the 1400 MHz band. This large sample allows us to examine the

statistics of the jitter distribution. We use the jitter parameter kJ to compare

pulsars, since it is independent of the pulse period.
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Since σDISS�σJ for most pulsars in our sample at 1400 MHz, we can use the

likelihood functions L(σC) computed in the ML analysis (see Eq. 5.24) as a proxy

for the likelihood functions L(σJ). In the case of PSR B1937+21, we explicitly set

L(σJ) = L(
√
σ2

C − σ2
DISS). We ignore PSR J1903+0327 as the upper-limit L(σC)

translates non-trivially to L(σJ). We create a continuous histogram that is the

sum of the individual likelihoods L(σJ), shown in Figure 5.10. The black region

shows the contributions from upper limit pulsar jitter values and the gray region

shows the contributions from measured pulsar values. The median jitter parameter

is kJ = σJ/P = 0.010+0.023
−0.006.

5.6 Noise Model and Implications for PTA Optimization

The noise covariance matrix for short timescales implied by our analysis is

Cνν′,tt′ = δtt′
[
δνν′σ

2
S/N(S) + σ2

J(T )
]

+ ρDISS,νν′,tt′σ
2
DISS(T ), (5.28)

where δ is the Kronecker delta and ρDISS,νν′,tt′ encapsulates the correlation scales

for DISS and we assume that bandwidth is fixed for each receiver. Shannon et

al. (2014) find that jitter decorrelates over a range of frequencies larger than the

total bandwidth of any receiver used in NG9; a decorrelation term is therefore not

included in our model. We re-emphasize that σS/N can be calculated directly from

the template shape and σJ is fixed for a given pulsar-frequency combination.

Pulsars dominated by template-fitting errors will see the greatest increase in

timing precision from increased integration time and larger bandwidth instrumen-

tation. Wideband timing systems allow for observations of an increased number

of scintles and a reduction of σDISS. Therefore, higher DM pulsars, dominated

by scintillation noise, will improve in timing quality and will would then become
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Figure 5.10: Continuous histogram of the jitter parameter kJ = σJ,1/P . The
shaded regions denote the probability density associated with measured values
(gray) and upper limits (black) of kJ.

attractive candidates for inclusion into PTAs. By contrast, pulsars dominated by

jitter on many epochs do not benefit substantially from wideband timing, though

their timing precision will always improve with the increased numbers of pulses

observed.

Scintillation monitoring is required in order to characterize the time-varying

scintillation parameters, which will not only change σDISS but change the PBF

over timescales much greater than that of a single epoch. Changes in the PBF will

alter pulse shapes and therefore introduce a timing delay into any TOA estimate

and contribute to the total white-noise variance.

NG9 uses an empirical, parameterized noise model fit in the timing analysis

(Arzoumanian et al. 2015a,b, 2016). For TOAs with an associated error σS/N from
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template-fitting, the white-noise model is

Cνν′,tt′ = δtt′
[
δνν′

(
F2σ2

S/N(S) +Q2
)

+ J 2
]
, (5.29)

where F (commonly referred to as EFAC) is a dimensionless, constant multiplier

to the template-fitting error, Q (EQUAD) accounts for sources of Gaussian white

noise added in quadrature to the template-fitting error, J (ECORR) accounts for

sources of white noise correlated in frequency such as jitter. In NG9, F ≈ 1 for all

pulsars, to within a factor of 2 for most pulsars. NG9 also fits a red noise model

that is negligible on the timescales of a single epoch.

Figure 5.11 shows the comparison between measurements of J versus σJ,30min in

black, with the gray points showing values where at least one of the two estimates

is an upper limit. We find that σJ,30min . J , which suggests that ECORR is

systematically measuring increases in the variance of the residuals, correlated in

frequency, beyond pulse jitter. For example, broadband RFI can cause correlations

in TOAs measured at different frequencies if unremoved. Replacement of the NG9

empirical white-noise model with our measurements will reduce the number of free

parameters in the timing analysis and should improve overall sensitivity to GWs.

5.7 Conclusions

The short-term white-noise model for pulsar timing is well defined. We have esti-

mated or placed limits on the contributions of the noise model’s three white-noise

components in the timing residuals of the NANOGrav PTA. The template-fitting

errors are consistent with Eq. 5.5 and dominate TOA precision for many of the

pulsars for many epochs, but scintillation makes jitter important for the higher
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Figure 5.11: Comparison of ECORR from NG9 with jitter values from this work.
Black points denote measurements in both while the gray points mark upper limits
in at least one of the values for a given pulsar/receiver combination. The diagonal
blue line shows where ECORR equals σJ,30min.

S/N epochs and TOAs. We find that the template-fitting and jitter errors can

be estimated with only pulse S/N as a parameter. The total short-term variance

needs contemporaneous measurements of scintillation parameters during observa-

tions to properly estimate the time-varying σDISS contribution. Errors in pulse

polarization calibration, or those errors introduced from unremoved RFI, will pro-

duce extra variance on short timescales. Long-term observations spanning multiple

epochs will have extra variance compared to the short-term model due to a variety

of effects that are not included in our analysis.

A large subset of our observed pulsars are jitter-dominated on many epochs and
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we have measured jitter values for 22 of 37 pulsars. Major improvements in TOA

estimation can therefore only be made through increased integration time. For

several pulsars, however, σDISS is an important if not dominant contribution to the

residuals. Wideband timing systems can yield improvements in pulsars with higher

DMs such as PSRs B1937+21, J1600−3053, J1903+0327, and even moderate-DM

pulsars like J2317+1439. Such systems can also improve the average S/N over all

epochs, and therefore gains in timing precision can still be made for nearly all of

the NANOGrav pulsars.

Jitter appears to be correlated in frequency over each band but not in time.

We find that the rms phase variations from jitter are of order 1% of the pulse

period, though with an extended tail towards higher values of the jitter parame-

ter kJ. Current noise models, such as the one used in NG9, utilize an empirical

parameterization that overestimates the rms jitter. Replacement of model fit pa-

rameters with those that can be fixed will ultimately increase sensitivity of the

PTA to GWs.

Future telescopes with increased collecting area and sensitivity will become

jitter- and DISS-noise dominated. Arrays can therefore be partitioned and pointed

at multiple pulsars simultaneously rather than one after another, providing longer

integration times for each pulsar and increasing the number of pulses being aver-

aged to reduce the jitter error contribution. The sub-arrays can be partitioned to

minimize TOA uncertainty per target pulsar using the formalism outlined here.

Wideband timing systems that allow for fine frequency- and time-resolution are

needed to fully characterize scintillation structures on a per-epoch basis.
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5.9 Appendix

5.9.1 Deviations from the Initial Timing Model

Errors in the initial timing model parameters used for pulse folding and de-

dispersion cause effects that can be separated into two related categories: an

increase in TOA uncertainties from pulse shape changes on the subintegration

timescale tsub, and correlated TOA errors over the observation duration T . The

quadratic fit of initial timing residuals in Eq. 5.19 will remove the latter, whereas

the former cannot be mitigated after data collection. In part 5.9.1 we discuss the

non-removable pulse shape changes, in part 5.9.1 we discuss the systematic devia-

tions from the initial timing residuals that we remove with our quadratic fit, and

in part 5.9.1 we discuss other miscellaneous effects that can cause departures from

the initial timing model.
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Irreversible Pulse Profile Smearing

1. Spin period errors: If the initial folding period is incorrect by an amount δP ,

pulse profiles will be smeared by an amount

σP ∼
δP

P
tsub. (5.30)

For isolated pulsars, the dominant folding error is due to an error in spin period,

σP ∼ 10 ps

(
δP

10−16 s

)
t100sP

−1
ms , (5.31)

where the typical error in the initial folding period is 10−16 s for pulsars in the

NANOGrav data set. Note that periods fit over many years of data are known to

much higher precision.

2. Binary orbit parameter errors: For binary pulsars, the observed pulse period

for low-eccentricity MSPs is Doppler-shifted by an amount (Lorimer & Kramer

2012)

σPb ∼ P
δv‖
c
∼ 2πP

c
δ

(
a sin i

Pb

)
∼ 2πPa sin i

cPb

√(
δa

a

)2

+

(
δ(sin i)

sin i

)2

+

(
δPb
Pb

)2

∼ 72.7 ns Pms alsec sin i P−1
b,day

√(
δa

a

)2

+

(
δ(sin i)

sin i

)2

+

(
δPb
Pb

)2

(5.32)

where a is the semi-major axis, i is the inclination angle, and Pb is the binary orbital

period, and we assume that the errors in the binary parameters are uncorrelated.

The error on these three parameters is much larger than the spin period error,

with δ(sin i)/ sin i ∼ 10−3 dominating the other two binary error terms in the

NANOGrav initial timing models even when sin i is well-measured. Therefore, for

typical pulsar parameters and when sin i is measurable, the profile smearing error

will be comparable to the spin period error but still negligible. Otherwise, the

timing error will be of the order of 10s of nanoseconds.
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3. DM variations: Differences in the initial timing model DM from the actual

DM will cause smearing of pulse profiles. The timing perturbation is roughly the

error in the dispersive delay across a frequency channel (Cordes 2002):

δtDM ' 8.3 µs δDM BMHzν
−3
GHz, (5.33)

with δDM measured in units of pc cm−3. The typical range in total DM variation

in the NANOGrav data set is ∼ 10−3 pc cm−3, which given a 50 MHz channel

bandwidth and an observing frequency of 1 GHz, yields a timing perturbation of

∼ 400 ns. A constant DM over the observation is removed by the term K(ν) in the

timing model fit. Intra-observation DM variations are discussed later in 5.9.1.2.

4. Polarization calibration errors: Incorrect gain calibration and summation of

the polarization profiles into the intensity profiles will cause pulse shape changes

that lead to TOA uncertainties when fitting with a template. The TOA error from

gain variation for circularly polarized channels is (Cordes et al. 2004)

δtpol ∼ 1 µs ε0.1πV,0.1W0.1ms, (5.34)

where ε = δg/g is the fractional gain error, πV is the degree of circular polarization,

and W is the pulse width. Timing offsets from gain calibration errors will vary

slowly with time and will be removed by the quadratic fit discussed in the next

sub-section (see for example 5.9.1.3).

Systematic Deviations from the Quadratic Fit of Initial Timing Pertur-

bations

1. Binary orbit parameter errors: For pulsars in short-period binary orbits, we will

need to fit out higher order terms in t when the period is of order the integration

time over the epoch and the binary parameter errors are large. The shortest period
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binary in NG9 is PSR J0023+0923 with a period of 200 min, nearly seven times

longer than the typical total integration time per epoch. The quadratic fit in

Eq. 5.19 will approximate the sinusoidal variations in TOA offsets introduced by

the orbit mis-estimation. The next dominant polynomial term is the cubic term,

with error ∼ σPb(T/Pb)
3, where (T/Pb)

3 ∼ 0.153 ∼ 3.4×10−3 for PSR J0023+0923

and smaller for all other pulsars in the NANOGrav data set. Therefore, using

Eq. 5.32, the error is negligible.

2. Ionospheric DM variations: Changes in DM over short timescales, such as

from ionospheric variations, will cause K(ν) to have time-dependence. The iono-

spheric DM will vary over the time span of a day due to the changing incident solar

flux on a position on the Earth’s surface by an amount . 3× 10−5 pc cm−3 (Lam

et al. 2015). The timing error is approximately the error in the dispersive delay

across a frequency channel, given by Eq. 5.33. For a maximum change in DM of

3 × 10−5 pc cm−3 over a 12 hr period, a 1 hr observing length, a 50 MHz chan-

nel bandwidth, and an observing frequency of 1 GHz, the timing perturbation is

≈ 1 ns. Therefore, over the observing span, the assumption that K(ν, t) ≈ K(ν)

holds.

3. Cross-coupling errors: Instrumental self-polarization will cause a slow,

secular variation in the initial timing residuals when unremoved (Cordes et al.

2004). Cross coupling in the feed will induce a measured false circular polariza-

tion πV ' 2η1/2πL, where η is the voltage cross coupling coefficient and πL is a

pulsar’s degree of linear polarization. While the associated timing errors can be

large, errors introduced by the cross-coupling term will cause a slow, secular vari-

ation in the residuals as the feed rotates during an observation and will therefore

be removed by our quadratic fit. Estimates of these parameters and the induced
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timing uncertainties will be focused on in future papers.

4. Rotation Measure (RM) variations: Faraday rotation from magnetic fields

along the pulse propagation path causes both a birefringent TOA delay and the

pulse polarization position angle (PPA) to rotate. Changes in the rotation measure

(RM =
∫
dl neB‖, in units of rad m−2) over short timescales can come from

ionospheric variations as with DM. The birefringent delay is given as (Cordes

2002)

δtRM = 0.18 ns RM ν−3
GHz (5.35)

and the change in PPA is (Lorimer & Kramer 2012)

∆ΨPPA = RM λ2 = 0.09 RM ν−2
GHz. (5.36)

The RM through the ionosphere is ∼ 1 rad m−2 with ∼ 10% variations on the

timescale of 1 hr (Sotomayor-Beltran et al. 2013) and the birefringent delay is

therefore negligible over short timescales. The change in the PPA will cause errors

in the polarization calibration that are slowly varying with time and therefore

removed by the quadratic fit.

5. Intrinsic pulsar spin noise: Rotational instabilities in the pulsar cause devia-

tions from the initial timing model with a steep, power-law noise spectrum over the

timescale of years (Cordes 2013). Shannon & Cordes (2010) measured spin noise

in radio pulsars to scale as σspin ∝ T 2.0±0.2. The pulsar with the largest measured

rms spin noise in the NANOGrav data set is PSR B1937+21, with σspin ≈ 1.5 µs

over 10 yr (Shannon & Cordes 2010; Arzoumanian et al. 2015b). The rms on the

timescale of 1 hr is ∼ 0.2 fs and is therefore negligible.

6. Stochastic GW background: Like intrinsic pulsar spin noise, GW perturba-

tions will also induce long-term correlations in residuals. However, the rms timing
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perturbation from a stochastic GW background of supermassive black hole bina-

ries over 10 yr is on the order of 100 ns (Siemens 2013). The rms is expected to

scale as σGW ∝ T 5/3, and therefore on the timescale of 1 hr the rms is ∼ 0.6 fs and

is also negligible.

Increases in Variance from Other Effects

1. Frequency-dependent DM: Cordes et al. (2016) describe differences in DM mea-

sured at different frequencies due to multipath scattering in the ISM and different

volumes of electrons probed. The different DMs as a function of frequency cause

differences in the frequency-dependent delays per channel, K(ν). However, the

timescale of refractive variations are weeks or longer, and are therefore this effect

is negligible on short timescales.

2. Mean PBF variations: As with frequency-dependent DM, the changes in

PBFs will occur on a pulsar’s refractive timescale and will therefore be negligible

on timescale of an hour.

3. Pulsar mode changes: Any potential mode changes may cause timing pa-

rameter differences from the initial timing model. Pulse profile shapes in our MSPs

have not been shown to deviate from the template over the timespan of single ob-

servations and any possible epoch-to-epoch mode changes are small and will be

removed by our quadratic fit to obtain the short-term timing model (Eq. 5.19).

4. Transient events: Giant pulses have been seen in pulsars such as PSR

B1937+21 and cause pulse shapes to deviate from the average template shape

(Cognard et al. 1996; Jenet et al. 2001; Zhuravlev et al. 2013). For PSR B1937+21,

giant pulses will appear at a rate of approximately 0.5 per 10 s pulse average, which
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spans ≈ 6400 pulse periods. Therefore, the giant pulse S/N must be a factor of

∼
√

6400 ∼ 80 larger than the average single-pulse S/N in order to dominate the

template matching fit and significantly alter the estimated TOA. The flux density

of the strongest giant pulse in Zhuravlev et al. (2013) is a factor of ∼ 3 smaller

than the threshold needed to affect the TOA estimation.

5. Remaining RFI: Any remaining RFI in the pulse profiles will introduce un-

modeled variance into our analysis. Broadband RFI can cause correlations between

residuals that can increase estimates of jitter.

5.9.2 PDF of TOA Errors due to Combined Additive Noise

and ISS Modulation

The template-fitting error (Eq. 5.5) can be written in the form

σS/N = σ0
S0

S
. (5.37)

Again, S is the S/N, proportional to (SPSR/SEFD)
√

2BT , where SPSR is the pulsar

flux density, SEFD is the system equivalent flux density, B is the receiver band-

width, and T is the total integration time. The subscript ‘0’ is used to denote

intrinsic values. We assume that S0 is constant, meaning that both the pulsar flux

density and system parameters are also constant (see §5.4.2).

We describe changes in S0 with a multiplicative gain factor g such that S = gS0.

The PDF of the scintillation gains due to DISS with nISS scintles contributing to

the measured profile is given by a chi-squared distribution with 2nISS degrees of

freedom (Cordes & Chernoff 1997, Appendix B):

fg(g|nISS) =
(gnISS)nISS

gΓ(nISS)
e−gnISSΘ(g). (5.38)

230



Unlike DISS, gains from RISS will vary slowly with both time and frequency. For

media that follow a Kolmogorov-type electron density wavenumber spectrum with

small refractive modulations, DISS and RISS are decoupled in the strong scattering

regime. RISS will have a symmetric PDF if focusing is not important and can be

approximated with a Gaussian distribution, fgRISS
(g) = N (0, σ2

RISS) with some

correlation time much greater than the observing duration T (Stinebring et al.

2000). The total gain can be written g = gDISSgRISS.

We can solve for the PDF of scintillated pulse S/Ns under a change of variables.

Eq 5.38 becomes

fS(S|nISS) = fg(g|nISS)
dg

dS
(5.39)

= fg

(
S

S0

∣∣∣∣nISS

)
1

S0

(5.40)

=
(SnISS/S0)nISS

SΓ(nISS)
e−SnISS/S0Θ(S). (5.41)

We can also quantify the distribution of TOA errors, ∆t, from scintillation.

Errors solely from template fitting in the unscintillated case, ∆t0, will be normally-

distributed, written as

f∆t0(∆t0) = N (0, σ2
S0

). (5.42)

As in Eq 5.5, we rewrite the rms error is

σS/N =
Weff

S
√
Nφ

(5.43)

=
Weff

gS0

√
Nφ

(5.44)

=
σS0

g
(5.45)

Again, under a change of variables, we can write

f∆t(∆t|g) = f∆t0(∆t0)
d∆t0
d∆t

(5.46)

= gf∆t0(g∆t) (5.47)
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For brevity, we will write Z = |∆t|/σ∆t0 . The marginal PDF is then

f∆t(∆t) =

∫ ∞

−∞
dg fg(g)f∆t(∆t|g) (5.48)

=

∫ ∞

−∞
dg g fg(g)f∆t0(g∆t0) (5.49)

=

∫ ∞

−∞
dg g e−g Θ(g)

1

σS0

√
2π

exp

(
−1

2
Z2g2

)
(5.50)

=
1

σS0

√
2π

∫ ∞

0

dg g e−g exp

(
−1

2
Z2g2

)
(5.51)

From Gradshteyn et al. (2007), Eq. 3.462.1, we have

∫ ∞

0

xα−1e−βx
2−γxdx = (2β)−α/2Γ(α)eγ

2/(8β)D−α

(
γ√
2β

)
,Re β > 0,Re α > 0,

(5.52)

where Dn(x) = 2−n/2e−x
2/4Hn(x/

√
2) is the Parabolic Cylinder Function defined

in terms of the Hermite Polynomial of order n, Hn(x). For this calculation, we

have α = nISS + 1, β = 1
2
Z2, γ = nISS. Thus, we can write

f∆t(∆t|nISS) =
1

σS0

√
2π

nnISS
ISS

Γ(nISS)
Z−(nISS+1)Γ(nISS + 1) exp

(
n2

ISS

4Z2

)
D−(nISS+1)

(nISS

Z

)

=
1

σS0

√
2π

(nISS

Z

)nISS+1

exp

(
1

4

(nISS

Z

)2
)
D−(nISS+1)

(nISS

Z

)

=
1

σS0

√
2π

(√
2nISS

Z

)nISS+1

H−(nISS+1)

(
nISS√

2Z

)
(5.53)

In the case where nISS = 1, this reduces to

f∆t(∆t|nISS) =
1

σS0

√
2π


Z2 −

√
π exp

(
1

2Z2

)
erfc

(
1√
2Z

)

√
2Z3


 . (5.54)
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CHAPTER 6

THE NANOGRAV NINE-YEAR DATA SET: EXCESS LONG-TERM

CORRELATED NOISE IN PULSAR ARRIVAL TIMES

Gravitational wave experiments using a pulsar timing array require both high

timing precision and high timing accuracy of recycled, millisecond pulsars. Pulse

arrival times can vary by an amount inconsistent with measurement errors, imply-

ing irregularities in the astrophysical clock that must be properly characterized.

The timing accuracy of pulsars is fundamentally limited by factors including rota-

tional spin noise, interstellar propagation effects, and low-frequency gravitational

waves. We assess the timing stability of 37 pulsars from the North American

Nanohertz Observatory for Gravitational Waves by measuring the excess noise

in pulsar timing residuals after taking into account the fully-measured white noise

model. We find that 27 pulsars show inconsistencies with a white-noise-only model.

Using the measurements of excess variance in our observed millisecond pulsars, we

further constrain the “timing noise” scaling law of Shannon & Cordes (2010). We

describe future strategies for determining the correlation properties of the timing

residuals and discuss the implications for gravitational wave detection and obser-

vation.

6.1 Introduction

Pulsars are some of the most stable astrophysical clocks in the Universe; recycled

millisecond pulsars (MSPs) are the most spin-stable. Such stability allows them

to be used as tools in experiments of fundamental physics, including tests of grav-

itation (e.g., Zhu et al. 2015), constraints on general relativity (Will 2014), and

detection of nHz-µHz-frequency gravitational waves (GWs; e.g., Arzoumanian et
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al. 2015a, 2016).

GWs will appear as temporally-correlated stochastic deviations from a timing

model that includes kinematic and astrometric terms that describe the pulsar-

observatory line of sight. Detection of GWs is accomplished by measuring a spe-

cific, quadrupolar angular correlation in pulse time of arrival (TOA) deviations

from many pulsars distributed over the sky. However, numerous other sources of

temporally-correlated noise contaminate our timing models and reduce each pul-

sar’s sensitivity to GWs.

Shannon & Cordes (2010, hereafter SC2010) investigated the strength and non-

stationarity of long-term, correlated “red” noise in TOAs from pulsars in the litera-

ture. They attributed the red noise to rotational instabilities in individual pulsars,

known as spin noise. Arguing that spin noise was the dominant source of red noise

in the pulsars, they globally characterized and developed scaling relations of spin

noise over all pulsar populations.

Other sources of red noise in TOAs are known. One such source is the in-

terstellar medium (ISM), which causes frequency-dependent time delays in pulse

arrival times. The largest effect comes from a dispersive delay proportional to the

dispersion measure (DM), the electron density integral along the line of sight, and

inverse radio frequency squared. DM is typically estimated using multi-frequency

observations and removed by assuming some structure in time. Imperfect esti-

mation of DM, from using incorrect temporal correlations, from combination of

asynchronously observed multi-frequency data, or from frequency-dependent DMs

due to interstellar scattering, will cause red noise in the timing residuals1 (Lam

et al. 2015; Cordes et al. 2016; Lam et al. 2016b). Other possible noise sources

1defined as TOAs minus timing model
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that can be temporally correlated are possible, including variations in the pulse

broadening function, polarization calibration (e.g., cross-coupling) errors, radio

frequency interference (RFI), and pulsar mode changes (see Appendix A of Lam

et al. 2016a, hereafter NG9WN).

The North American Nanohertz Observatory for Gravitational Waves

(NANOGrav; McLaughlin 2013) is a collaboration that observes a pulsar timing

array for the detection and long-term study of GWs. The goal is to correlate arrival

time differences in pulses from individual pulsars after a timing model and noise

model have been subtracted from each pulsar. Understanding the noise model is

crucial for properly calibrating the array for optimal GW sensitivity. This work

aims to characterize the timing accuracy of the NANOGrav MSPs, paralleling the

results of NG9WN to characterize their timing precision. In §6.2, we describe the

methodology for estimating a noise process in the presence of a second, known

noise process. In §6.3, we describe the NANOGrav nine-year data set and the

implementation of the measured white-noise model for producing residuals. We

estimate the excess noise in our MSPs in §6.4. In §6.5, we insert our measurements

into the SC2010 dataset and re-derive the scaling relations for excess noise in var-

ious pulsar class subsets. We lay out the methods for determining the spectral

properties of our timing residuals and discuss other future work in §6.6, and we

summarize our conclusions in §6.7.

6.2 Variance of a Stochastic Process with Additive Noise

We want to use pulsar timing residuals to determine the amount of excess variance

over the white noise in our pulse arrival times. More generally, we want to measure
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the posterior PDF of the variance of a stochastic process when combined with some

other independent process, e.g., white noise. Let yi = xi + ni be the measured

process that is the sum of two Gaussian processes, where xi is the stochastic noise

process of interest with variance we wish to characterize, ni is additive white noise,

and i will be used to label the individual measurements. We assume that both

noise processes are zero mean; it therefore follows that yi will be zero mean.

Since yi is a zero mean Gaussian process then the PDF of yi is simply N (0, σ2
yi

),

where σ2
yi

represents the variance of yi. We can separate each σ2
yi

into the sum of

two variances σ2
xi

+ σ2
ni

. We define the total excess variance over the white noise

to be σex
2 ≡ N−1

∑
σ2
xi

. Thus, for each measurement yi with measurement error

σni , we approximate the variance as σ2
yi

= σex
2 + σ2

ni
. The likelihood function for

σex is then

L(σex|{yi, σni}) =
∏

i

1√
2π(σex

2 + σ2
ni

)
exp

[
− y2

i

2(σex
2 + σ2

ni
)

]
. (6.1)

The width of the likelihood function (how well we can estimate σex) will depend on

the magnitude of the measurement errors σni and on the stationarity of σex. For

example, any additional non-stationary noise processes, such as new short-term

(i.e., much less than the total data span) RFI, will increase not only the estimated

σex but the error on σex as well.

6.3 Observational Data: The NANOGrav Nine-Year Data

Set

Here we will briefly summarize our data. We used TOAs and parameter files

from the NANOGrav nine-year data set described in Arzoumanian et al. (2015b,
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hereafter NG9) for our analysis. Multi-frequency observations of thirty-seven MSPs

were carried out at the Green Bank Telescope (GBT) and Arecibo Observatory

(AO). We used two generations of backends at each telescope, the GASP/GUPPI

backends at GBT and the ASP/PUPPI backends at AO (Demorest 2007; DuPlain

et al. 2008; Ford et al. 2010; Demorest et al. 2013), with later backends processing

a much larger bandwidth for improved pulse sensitivity.

Pulse profiles were folded and de-dispersed using an initial timing model with

sufficient accuracy to keep any timing noise from profile shape changes at negli-

gible levels (NG9WN). Polarization calibration and RFI excision algorithms were

applied to the raw data profiles using the psrchive2 software package (Hotan et

al. 2004; van Straten et al. 2012). Prior to every pulsar observation, a broadband

noise source was introduced into the two polarization signal paths between the

receiver and the backend systems, which allowed for differential gain and phase

calibration. We assumed that the noise source power in the two hands of polar-

ization was not constant with time. Therefore, we observed a bright, unpolarized

quasar once per month per telescope per frequency to properly calibrate the noise

source.

After calibration, known RFI signals were excised, followed by a filtering pro-

cess that removed data frequency channels in which the off-pulse variation in a 20-

channel wide frequency window was four times greater than the median variation

value. Throughout the data reduction process, profiles were averaged together in

time to reduce the data volume at each stage. The final pulse profiles used to gen-

erated TOAs were fully time averaged with some frequency averaging (the amount

dependent on bandwidth) to build pulse S/N. The final frequency resolution was of

2http://psrchive.sourceforge.net, accessed via scripts available at https://github.

com/demorest/nanopipe
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order MHz per channel, sufficient so that timing errors from frequency-dependent

pulse profile evolution were negligible across the channel (Pennucci et al. 2014;

NG9WN). See NG9 for more details on the data processing.

Summing over both orthogonal polarization pulse profiles produced the inten-

sity profiles used for timing. TOAs were generated from the multi-frequency pulse

profiles using a single smoothed template waveform per pulsar per telescope per

frequency band and a Fourier-domain estimation algorithm (Taylor 1992). Using

the TOAs and an initial timing model as a starting point, we fit timing parameters

describing the spin, astrometry, and environmental properties (e.g., binary) of each

pulsar. We used the tempo3 software package for all timing parameter estimation.

Significance of new parameters was determined by use of an F-test.

On a given epoch, we observed each pulsar over at least two frequency bands

to estimate the dispersive delay due to the changing dispersion measure (DM),

the integral of electron density along the line of sight. We included one DMX

parameter per epoch which described the difference from some fixed reference DM.

In addition, between zero and five frequency-dependent terms (FD) modeling the

time-independent pulse profile evolution were fit.

Lastly, NG9 used a parameterized noise model that includes both white and

red noise terms correlated differently in time and frequency. The noise model esti-

mation starts with the template-matching TOA measurement error and increases

them with a scaling factor (EFAC) and adding additional variances in quadrature:

one that characterizes the correlations between frequency bands due to processes

such as pulse jitter or radio frequency interference (ECORR), and one that char-

acterizes additional additive noise (EQUAD). Finally, red noise (RN) correlated in

3http://tempo.sourceforge.net
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time was assumed to be a Gaussian process with a power-law spectrum. Complete

definitions for the parameters are provided in NG9. The noise parameters were

estimated with a Bayesian inference package4 and fit for in a joint likelihood with

the timing model parameters. Both parameter (par) and TOA (tim) files from the

NG9 data release are available at https://data.nanograv.org.

6.4 Excess Variance Estimation

We now wish to estimate the amount excess variance in our timing residuals beyond

the white-noise model described in NG9WN. Starting with the NG9 data release,

we first remove all noise parameters from the par files to avoid biasing our results.

We choose to keep all achromatic timing parameters for refitting. Parameters

that are or are not introduced as significant by the F-test criterion as a result of

the Bayesian noise model estimation will bias our variance estimation. However,

the largest contributors to the timing fit are the spin and astrometric terms, all

of which are fit. Introduction of higher-order binary terms, for example, will not

significantly reduce the variance from a long-term, correlated process such as power

law red noise but the spin frequency and spin frequency derivative parameters are

linear and quadratic terms, respectively, and are highly covariant with the red

noise; variance removed as a result of the fit for these two terms will be discussed

later.

We fix the frequency-dependent FD and DMX parameters in our fit to the

values estimated in NG9. In many cases, tempo will attempt to minimize the χ2

of the overall timing fit by separating the TOAs from different frequency bands

4https://github.com/jellis18/PAL2
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within a given epoch to produce residuals at different pulse phases as a function of

frequency band. The splitting of residuals results from power preferentially being

absorbed by the achromatic spin and astrometric terms, i.e., there is covariance

between the the achromatic and chromatic parameters. In fixing the frequency-

dependent terms, we assume that the TOAs previously fit over a given epoch are

closely represented by the infinite-frequency value plus noise. Changes in the FD

and DMX parameters from our fit should be non-zero but we assume them to be

small in comparison to the total excess variance. DM mis-estimation error, as well

as errors from other frequency-dependent effects ignored in the timing fit (e.g.,

temporal changes in interstellar scattering), will introduce excess noise into the

timing residuals that will be included in the overall noise budget but again should

not change greatly as a result of fixing the FD and DMX parameters.

We remove pulsar/backend combinations from our analysis where white-noise

parameters could not estimated due to low pulse S/N. Otherwise, we add the

jitter (σJ) and diffractive interstellar scintillation (σDISS) errors from NG9WN in

quadrature to the template-fitting errors after scaling them appropriately with

time, such that

σS/N →
√
σ2

S/N + σ2
J(tobs) + σ2

DISS(Bobs, tobs), (6.2)

where tobs is the total time span of the observation and Bobs is the channel band-

width of each TOA (much less than the total of the observing band). The jitter

noise σJ is proportional to t
−1/2
obs . The scintillation noise non-trivially scales with

bandwidth and time according to the formula

σDISS ≈
τd√
nISS

≈ τd

[(
1 + ηt

T

∆td

)(
1 + ην

B

∆νd

)]−1/2

. (6.3)
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Table 6.1. Variations in Noise Models

Model σS/N EFAC EQUAD ECORR RN σJ σDISS Fixed DMX/FD

A × × × × ×
B × ×
C × × × ×

where τd is the scattering timescale, nISS is the number of scintles, ∆td and ∆νd

are the scintillation bandwidth and timescale respectively, T is the observation

duration, andB is the observation bandwidth. The filling factors ηt, ην are typically

in the range 0.1 to 0.3 (Cordes & Shannon 2010; Levin et al. 2016), we choose them

to be 0.2 as in NG9WN. They also choose to scale jitter and scintillation noise to

30 minute observations and bandwidths equal to the that of the full band (rather

than the channel banwidth), as provided in NG9. After we construct our new TOA

errors, we use tempo to refit the timing model. For pulsars with upper limits on

σJ, we set the value of σJ we use equal to its 95% upper limit, providing us a

conservative lower bound on the excess noise.

Table 6.1 provides a summary of three noise models we test in this section.

Model A is directly from NG9. Model B removes all additional noise param-

eters except for the template-fitting errors on the TOAs. Note that in order

to achieve a phase-connected solution between frequency bands, we must cur-

rently fix frequency-dependent timing parameters as discussed previously. Model

C starts with Model B and adds in the jitter and scintillation noise parameters

from NG9WN. It is the noise model we test most thoroughly in this paper.

We show a comparison of the timing residuals for PSR B1937+21 obtained from

the three noise models in Figure 6.1. PSR B1937+21 has the smallest template-
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Figure 6.1: Comparison of residuals using the different noise models defined in
Table 6.1. Colors indicate different bands, with green being 820 MHz, black being
1400 MHz, and blue being 2300 MHz.

fitting and jitter errors in NG9 within each given frequency band both at AO

and GBT (NG9WN) while its scintillation noise is the largest of the three white-

noise terms, which is atypical for pulsars in our data set. We show its residuals

as an example to demonstrate the effect of the timing model refit because it is

not dominated by template fitting errors and has known red noise residuals (e.g.,

Shannon & Cordes 2010; Arzoumanian et al. 2015b). As expected visually from

Figure 6.1, we see PSR B1937+21 contains well-measured excess noise beyond the

white-noise model.

Using the Model C residuals, we follow the methodology laid out in §6.2 for cal-
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culating the excess noise. Figure 6.2 shows the results of the maximum likelihood

analysis for measured excess noise in the NANOGrav pulsars using the Model C

residuals. Detections are shown with the maximum likelihood value with ±34.1%

errors. Non-detections are shown as 95% upper limits. All values are shown unnor-

malized to the length of the data span; we expect longer data sets to show increased

excess noise, either from the presence of red noise or from increased probability of

other noise sources (e.g., RFI) being introduced. We note that in SC2010, they

consider the excess noise after a quadratic fit for spin frequency and frequency

derivative over the timing residuals. Hereafter, we define the excess noise similarly

to prevent the need for a prior model for the true excess noise and to keep our

results consistent with theirs.

PSRs J1909−3744 and J1713+0747 are two of the best timers observed by

NANOGrav, both high in S/N with very low white-noise parameters (NG9WN).

We note that they also show the lowest amounts of excess noise of all of the

NANOGrav pulsars. Many of the pulsars with the highest measured values are

consistent with those that displayed “significant” red noise in NG9. Five of the top

seven detections, PSRs J1643−1224, J1903+0327, J1910+1256, J1944+0907, and

B1953+29, were all those in NG9 for which unmodeled ISM propagation effects

were claimed to be the dominant cause of the the excess noise. For the other two,

PSR J1012+5307 also showed measurable red noise in NG9. PSR J1923+2515

shows offset timing residuals at the lower frequency band (430 MHz) from the

older ASP backend, suggesting an instrumental effect causing the large measured

excess noise. The effect of instrumental biases are being explored in the next

NANOGrav data release (Arzoumanian et al., in prep.).

In Figure 6.3, we explore the possible relationship between σex and ISM noise
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Figure 6.2: Measured excess noise for each of the NANOGrav pulsars ranked by
decreasing value. Detections are shown with the maximum likelihood value and
34.1% errors. Upper limits are shown at the 95% level.
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Figure 6.3: Excess noise in NANOGrav pulsars versus DM. Colors denote which
telescope and frequency bands were used to observe a pulsar. The two blue
points represent PSRs J1713+0747 (820/1400 at GBT and 1400/2300 at AO) and
B1937+21 (820/1400 at GBT and 430/1400 at AO).

by plotting versus DM. Colors show which telescopes and frequency bands were

used to observe each pulsar. No significant trend is found between the points.

6.5 Global Scaling Law Maximum Likelihood Analysis

We assume that the excess noise is a function of ν and ν̇, the spin frequency

and spin frequency derivative, respectively, as well as a function of observing time

span T . Figure 6.4 shows the excess noise as a function of these three observables.

The different pulsar populations are displayed with differently shaped symbols and

we explicitly separate the NANOGrav pulsars from the other MSPs provided in
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SC2010. Detections of excess noise are given by the filled symbols and upper limits

are given by the unfilled ones.

SC2010 attributes σex to rotational spin noise alone and thus the excess noise

would be a function of the two basic pulsar spin observables and time. They

argue that for most pulsars, spin noise is the dominant source of excess noise. At

the timing precision level of MSPs, it is not clear that spin noise should be the

dominant term. In fact, we expect additional errors from sources previously listed

(i.e., ISM, polarization calibration, GWs). However, while the MSP (including

NANOGrav pulsars) spin noise values will be biased, the trends in overall excess

noise as shown in Figure 6.4 remain the same. Therefore, we believe that using

the three-observable formalism with parameters that only represent spin noise is

adequate to describe the excess noise in general though more parameters may be

required in the future. For example, if a trend is present in Figure 6.3, then a

scaling in DM should be included in the fit.

250



0.
1

1
10

10
2

10
3

ν
[H

z]

0.
010.
111010
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

σex[µs]

M
A

G

C
P

M
S

P

N
A

N
O

0.
01

0.
1

1
10

10
2

10
3

10
4

ν̇
[1

0−
15

]

0.
1

1
10

10
2

T
[y

r]

F
ig

u
re

6.
4:

M
ea

su
re

d
ex

ce
ss

n
oi

se
ve

rs
u
s

sp
in

fr
eq

u
en

cy
(l

ef
t)

,
sp

in
fr

eq
u
en

cy
d
er

iv
at

iv
e

(m
id

d
le

),
an

d
ob

se
rv

in
g

ti
m

e
sp

an
(r

ig
h
t)

.
S
ta

rs
in

d
ic

at
e

m
ag

n
et

ar
s

(M
A

G
s)

,
ci

rc
le

s
in

d
ic

at
e

ca
n
on

ic
al

p
u
ls

ar
s

(C
P

s)
,

an
d

sq
u
ar

es
in

d
ic

at
e

m
il
li
se

co
n
d

p
u
ls

ar
s

(M
S
P

s)
,

al
l

fr
om

S
h
an

n
on

&
C

or
d
es

(2
01

0)
.

T
ri

an
gl

es
in

d
ic

at
e

N
A

N
O

G
ra

v
M

S
P

s
(N

A
N

O
)

w
it

h
m

ea
su

re
m

en
ts

d
er

iv
ed

fr
om

th
is

w
or

k
.

F
il
le

d
sy

m
b

ol
s

in
d
ic

at
e

d
et

ec
ti

on
s

of
ex

ce
ss

n
oi

se
w

h
il
e

u
n
fi
ll
ed

sy
m

b
ol

s
in

d
ic

at
e

u
p
p

er
li
m

it
s.

251



Following SC2010, we write the rms excess after a quadratic fit as

σ̂ex(ν, ν̇, T |C2, α, β, γ) = C2ν
α
Hz|ν̇−15|βT γyr µs (6.4)

where C2, α, β, and γ are parameters to be estimated over each pulsar included

in the analysis. For detections of excess noise, we assume that the variance is

log-normally distributed, represented with a PDF

fD(σex|{ν, ν̇, T}, {C2, α, β, γ, δ}) =

1√
2πδ2

exp
(
− [lnσex−ln σ̂ex(ν,ν̇,T |C2,α,β,γ)]2

2δ2

)
. (6.5)

For upper limit measurements on the excess noise, we use the survival function

of the log-normal distribution (e.g., see Lawless 2005 for a review, noting that an

upper limit likelihood is equivalent to a left-censored distribution, or 1 minus the

survival function) to calculate the appropriate distribution for upper limits as

fUL(σex|{ν, ν̇, T}, {C2, α, β, γ, δ}) =

1
2

(
1 + erf

[
lnσex−ln σ̂ex(ν,ν̇,T |C2,α,β,γ)

δ
√

2

])
, (6.6)

where erf is the error function. We note that the order of the argument to erf

presented here corrects a typo in SC2010, which is reversed by a negative sign.

Introduction of the typo into our likelihood code allowed us to recover parameters

consistent with those reported in SC2010 for different pulsar population subsets

except for the MSP-only case, in which we were unable to recover the parameters.

Since only two pulsars (though many more measurements) were measured to have

excess noise in SC2010, there are large covariance between the parameters because

of the “steepness” of the fits (all but one measurement have the same ν and ṅu).

Therefore, we ignore the MSP-only case in our analysis.
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We define our five-parameter likelihood function as

L(C2, α, β, γ, δ|{σex,i, νi, ν̇i, Ti}) =
∏

j

fD(σex,j|{νj, ν̇j, Tj}, {C2, α, β, γ, δ})×
∏

k

fUL(σex,k|{νk, ν̇k, Tk}, {C2, α, β, γ, δ})(6.7)

where i labels all of the individual measurements, j labels the subset of measure-

ments with detected excess variance, and k labels the subset of measurements with

upper limits on the excess variance. We perform a linear grid search over the five

parameters lnC2, α, β, γ, δ with range and resolution to sufficiently sample the pa-

rameter space. For computational stability, we first compute the log-likelihood as

the sum of the PDFs in Eq. 6.7.

Figure 6.5 shows the likelihood analysis run with all pulsars included. Pa-

rameters are estimated by taking the one-dimensional marginalized distributions,

computing the CDF, and finding the 34.1% confidence regions. We perform a simi-

lar analysis over different subsets of the pulsar populations and provide out results

in Table 6.2. Again, since the MSP-only case is not constraining, we do not report

it.

Figure 6.6 shows the measured excess noise versus the model excess noise using

the parameters when the maximum likelihood is computed for all pulsars. The

addition of the NANOGrav pulsars to the fit helps constrain the power law rela-

tions at lower ν and ν̇ as compared with SC2010, which only contained (multiple

estimates of) detected noise in two MSPs.
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Figure 6.5: Global maximum likelihood analysis results when computed for all
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the model excess noise, and the dashed and dotted lines show the 1 and 2σ errors
as estimated by δ, respectively.
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6.6 Future Work

Our first maximum likelihood analysis allowed us to characterize the total ex-

cess noise in the NANOGrav data set. Moving forward, we will break the to-

tal noise into its constituent components. For example, we can estimate two of

the contributions of ISM noise: DM mis-estimation errors from non-simultaneous

multi-frequency observations (Lam et al. 2015) and errors from improper fitting of

frequency-dependent DM due to multipath propagation (Cordes et al. 2016). Lim-

its on other sources of excess noise, such as from polarization calibration errors,

can also be explored.

Besides measuring the total variance of individual pulsar residual time series,

the spectral properties of each are also of interest. We can average together residu-

als within an epoch, which allows us to characterize the long-term correlated fluc-

tuations with time rather than variations on a per-frequency-channel level largely

associated with white noise. Epoch-averaged residuals can be constructed by cal-

culating the covariance matrix from the white-noise model as described in Arzou-

manian et al. (2015a).

One common method for estimating the spectral properties of a time series is

with a Fourier-based method, such as a Lomb-Scargle periodogram for unequally

sampled data (Lomb 1976; Scargle 1982). However, Fourier-based spectral esti-

mators suffer from spectral leakage resulting from a finite time series data span.

We can represent the data span as a window function W (t) weighting an infinite

data span such that the weights equal one within the time range and zero other-

wise. The original spectrum of the infinite time series is then convolved with the

spectral window function |W̃ (f)|2 to yield the measured power spectrum (e.g., see

Coles et al. 2011). Since the sidelobes of the spectral window function fall of as
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f−2, power-law spectra with a spectral index steeper than 2 will be biased. Coles

et al. (2011) suggest pre-whitening the time series via a Cholesky decomposition

of the covariance matrix. The analysis is typically completed in stages since the

spectral index is not known a priori. Each application of the pre-whitening filter

reduces the observed spectral index by 2, allowing the unbiased spectral index to

be recovered with a Fourier-based method.

Other methods exist for estimating a time series’ spectral properties. A maxi-

mum entropy spectral estimator does not suffer from the effects of leakage described

above though typically requires interpolation of the time series to an evenly sam-

pled grid, which can cause artifacts in the resultant spectrum (especially inter-

polation at high polynomial order). A structure function analysis is useful for

operating in the time domain while taking into account uneven sampling of the

time series. Since low-order structure functions will saturate with increasing power

laws in time lag τ , higher order structure functions can be used to estimate steeper

spectra. However, higher orders require improved time sampling to adequately es-

timate the higher-order increments, which are a function of increased number of

time series samples.

The quadratic fit for ν and ν̇ in the timing model will remove power from the

noise spectrum and cause mis-estimation of the true spectral slope. Given the

measured spectral slope, we can estimate the true spectral slope via two methods.

First, we can simulate power-law noise, fit a quadratic polynomial, and calculate

the variance loss over many realizations. The fractional variance loss will be greater

for steeper power-law spectra. Second, we can more directly estimate the power

loss by analytically calculating the transmission function and applying it to a given

power spectrum (e.g., Madison et al. 2013). Either method will allow us to estimate
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the true spectral index of the underlying noise process.

6.7 Conclusions

We examined the amount of excess noise in NANOGrav timing residuals beyond

the measured white noise. After re-weighting our TOAs, we detect excess noise

in 27 of our pulsars. The addition of measurements from the NANOGrav pulsars

helps constrain the scaling relations first derived in SC2010 by anchoring the fit at

lower ν and ν̇. Future work in splitting the excess noise into components can help

further attribute the proper amount of noise to rotational instabilities and further

bound the relations to spin noise.

For a Gaussian process with power spectrum S(f) ∝ f−γred , the spectral index

γred is related to the maximum likelihood parameter γ by γred = 2γ+ 1 (Arzouma-

nian et al. 2015b). Therefore, for γ = 1.42 ± 0.08, a time series described with a

power-law spectrum will have spectral index γred = 3.84± 0.16. The NANOGrav-

pulsar-only fit with γ consistent with zero yields a shallower spectral index γred ≈ 2,

and therefore our results are consistent with the overall finding in NG9 (note that

our definition of γred differs by a minus sign.

As demonstrated by the Laser Interferometer Gravitational-Wave Observa-

tory’s recent detection of GWs, understanding the noise within the detector is

imperative for the instrument’s capability to detect GWs (Abbott et al. 2016)5.

With NANOGrav and other collaborations moving towards the detection of low-

frequency GWs, we require full noise characterization of the NANOGrav pulsar

5See also “Characterization of transient noise in Advanced LIGO relevant to gravitational
wave signal GW150914”, https://dcc.ligo.org/public/0122/P1500238/022/P1500238_

GW150914_noise_characterization.pdf
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timing array. Implementation of the full noise model we describe will help remove

biases on timing parameter estimation and improve sensitivity towards the growing

GW signal in our data.
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CHAPTER 7

FUTURE DIRECTIONS

In this chapter, we will briefly cover directions for future expansion on the

work we have presented. We will continue with the characterization of pulsars and

interstellar medium, leading to the eventual application of our work in timing and

noise models for pulsar timing arrays.

7.1 Epoch-Dependent Refraction in the Interstellar

Medium

Electron-density fluctuations in the interstellar medium (ISM) will alter the path

of propagating radio waves as they pass through. Refraction of the source image

causes a change in the position and shape (i.e., ellipticity) of the measured image,

resulting in timing and intensity perturbations of observed pulses. We expect

that pulsar timing observables, such as flux, scintillation bandwidth, scintillation

timescale, etc., will be time-varying but correlated as refraction modulates the

measured diffractive pattern. We observed PSR J2317+1439 at 327 MHz over

six months at the Arecibo Observatory. We collected baseband data so that we

could resolve the small scintles. With our data set, we can measure the different

observables and test if the temporal variations in the observables can be described

by changes in the image due to refraction. We can compare our results to those in

the literature (e.g., Coles et al. 2015) for several other pulsars where various levels

of correlation are observed, suggesting that refraction is a contributor to the time

variability of the parameters along those lines of sight.
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7.2 Constraining Spatial Anisotropies in Electron Density

Wavenumber Spectra

Spatial variations in interstellar electron density are assumed to have a

Kolmogorov-like wavenumber spectrum consistent with a large number of past

measurements (see Chapter 4 for more information and references). The wavenum-

ber spectrum is assumed to be a power law extending over a large range of

wavenumbers q. The wavenumber range corresponds to electron-density length

scales l ≡ 2π/q probed in the ISM. The minimal length scale probed by pulsar

observations comes from the scintillation timescale. For pulsars with a scintillation

timescale ∆tISS ∼ 100 s (on the shorter side for the typical pulsars we observe)

traveling with velocity v ∼ 100 km/s, the associated length scale probed is 104 km.

Temporal variations in dispersion measure (DM) probe larger length scales; a pul-

sar moving with velocity v ∼ 100 km/s over 10 years samples DM variations up to

order mpc length scales. Using DM measurements from globular cluster pulsars

(e.g., Ransom 2008), we can extend the range of length scales probed by measuring

spatial variations in DM. For a globular cluster 10 kpc distant, pulsars separated

by 1 arcsec will sample DM variations over a length scale of 0.05 pc, an order of

magnitude larger than those sampled by temporal variations. Thus, we can further

constrain the electron-density wavenumber spectra along those lines of sight over

a greater range of wavenumbers.

Using DM measurements of globular cluster pulsars, we can also constrain

anisotropies in the spatial variations, known from a number of past observations in

the literature, such as scintillation arcs and ellipticity of scattered images (Cordes

et al. 2006; Brisken et al. 2010). The anisotropic wavenumber spectrum can be

written as a stretched version of the isotropic spectrum for simplicity, which pro-
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vides an analytically tractable model with only a few additional parameters. Such

power spectra are related to the spatial DM structure function, which can be sam-

pled adequately if enough pulsar pairs can be observed. Therefore, we will target

the globular clusters 47 Tucanae and Terzan 5, where each contain over 25 known

millisecond pulsars. Combined with temporal DM measurements, we can directly

probe anisotropies along both lines of sight.

7.3 Single Pulse Statistics and the Timing Noise Budget

of PSR J1713+0747

In Chapter 2, we showed noise analyses of PSR J1713+0747 from timescales

. 1 day down to the timescale of seconds, the lower subintegration lengths from

the telescopes used to observe the pulsars. The wealth of baseband data available

from the campaign will allow for analyses to be performed directly on single pulses

from one of the brightest and best-timed millisecond pulsars observed. We will be

able to look for noise sources on the full 0-24 hour timescales that might limit our

timing precision. We can employ a variety of techniques on single pulse data from

a subset of the nine-telescope observation to constrain timing precision in current

and future pulsar observations.

Such work has been mentioned in the list of follow-up projects in Chapter 2

(§5). The goals of this project include: (i) determining the types of pulse-to-

pulse variations present; (ii) searching for the presence of or placing limits on

state-change phenomena, such as mode changes; (iii) quantifying the amount of

pulse phase and amplitude jitter; (iv) quantifying the frequency-dependent profile

evolution of the pulse and the effect of its mis-estimation; and (v) quantifying
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the rate of convergence of profiles and times of arrival versus the number of pulses

averaged. We expect that an assessment of the three dominant white-noise terms in

pulse arrival time errors (template fitting, jitter, and scintillation noise) will yield

consistent results with those presented in Chapter 5 though we can verify that

statement with these independent data. Any additional sources of noise found

at the single pulse level can drastically alter our current prescription for a pulsar

timing noise model. Placing limits on such noise sources is important for testing

our assumptions of pulse profile stability in all pulsars used within a pulsar timing

array.

7.4 Metrics for Pulsar Timing Quality

Using our current pulsar noise characterization, we can develop metrics for deter-

mining how well a pulsar will perform in a pulsar timing array. We can separate

our metrics into two categories: those relying on pulsar-dependent parameters

and those on observing parameters. Therefore, we can determine how intrinsi-

cally “good” a pulsar will perform and then how well it perform in the context of

different observing setups (i.e., performance by new telescopes).

In Chapter 5, we discussed the three contributions to white noise in TOAs.

The template fitting error depends on the effective width and the average signal-

to-noise (S/N) ratio of the pulse. Scintillation can modulate the S/N, and so the

scintillation bandwidth and timescale, which effect the number of scintles observed,

must also be considered. The jitter noise can be parameterized as an rms timing

perturbation at the single pulse level and will also depend on the pulse period

(assuming constant observing times between pulsars). Scintillation noise will de-

266



pend on the two scintillation parameters. Spin noise has been shown to depend

on the spin frequency and frequency derivative of the pulsars, as well as the total

observing time span (Shannon & Cordes 2010; Chapter 6). Combining all of the

parameters mentioned into suitable metrics will allow us to quantify how good of

a timer a pulsar will be intrinsically.

Observatory-specific parameters, such as telescope area and system equivalent

flux density, will directly affect the observed S/N and modify how well a given

pulsar might perform. The choice of radio frequencies also alters the S/N since

pulsar spectra are not flat. Different radio frequencies also change errors from

interstellar propagation effects, e.g., asynchronous DM estimation (Chapter 3) or

frequency-dependent DM (Cordes et al. 2016). Augmenting the intrinsic pulsar

parameters with observatory parameters will allow us to quantify how good of a

timer a pulsar will be observationally. By combining both and quantifying our

metrics appropriately, we hope to be able to summarize any pulsar’s performance

in our pulsar timing array.
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CHAPTER 8

CONCLUSIONS

In this work, we have begun to characterize our pulsar timing array gravita-

tional wave (GW) detector. We started with a targeted campaign of one of the

best-timed pulsars and were able to demonstrate timing errors from frequency-

dependent pulse profile evolution and intrinsic pulse jitter. We then quantified dis-

persion measure mis-estimation from asynchronous multi-frequency observations

and its effect on timing precision. Systematic and stochastic causes of disper-

sion measure variations were explored in the following chapter, with contributions

along the entire pulse propagation path between the observatory and the pulsar.

Next, we analyzed pulsar observations on different epochs independently to de-

velop a well-defined white noise budget for our millisecond pulsars. Finally, we

were able to expand the scope of the pulsar noise model by quantifying additional

contributions to pulse arrival time errors.

The North American Nanohertz Observatory for Gravitational Waves collabo-

ration continues to observe many of the best-timed millisecond pulsars known. By

implementing this work into the timing analyses, we hope to drastically gain sen-

sitivity to GWs and further improve the timing quality of our pulsars. Equipped

with our continuously advancing detector, we expect within the next few years to

open a new window to the low-frequency GW Universe.
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APPENDIX A

PYPULSE

Originally based on the PSRCHIVE1 pulsar data processing package, Py-

Pulse (https://github.com/mtlam/PyPulse/) is a pure Python implementation

of PSRCHIVE’s basic functionality in handling data in the PSRFITS format

(Hotan et al. 2004; van Straten et al. 2012). It is designed to be easy to install,

with a minimal number of standard Python packages used (e.g., numpy2, scipy3,

matplotlib4, astropy5). It is fully compatible with Python versions 2 and 3.

The code is object oriented in design, with the primary structures being class

based. Constructed objects call their methods (functions) and change the internal

stored state rather than have external functions called on the data products. The

following sections will discuss each of the main classes of PyPulse.

A.1 Archive

The primary data array of profiles in a PSRFITS file is given by I(t, p, ν, φ), the

pulse intensity as a function of time t, polarization p, frequency ν, phase φ, where

the arguments are in the order of the array dimensions. To save memory, intensity

data are stored in multiple arrays. The raw data array (DATA) d is the largest in

dimensionality but for folded pulse data is typically stored as an array of 16-bit

integers. To retrieve the raw data value for each pulse profile, the data array is

then multiplied by a scale array (DAT SCL) s and an offset array (DAT OFFS) o

1http://psrchive.sourceforge.net
2http://www.numpy.org/
3http://www.scipy.org/
4http://www.matplotlib.org/
5http://www.astropy.org/
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is added. An array of weights (DAT WTS) w is also stored internally and typically

modifies the raw data, e.g., when excising radio frequency interference. The three

modifier arrays are of much smaller size than the data array and are typically stored

as in 32-bit single-precision float format. Mathematically, the resultant array of

pulse intensities can be written as

I(t, p, ν, φ) = [s(t, p, ν)× d(t, p, ν, φ) + o(t, p, ν)]w(t, ν). (A.1)

PSRFITS files also contain a wide range of additional information stored internally,

including a history of all PSRCHIVE modifications to the file, a folding ephemeris,

and a large global header of useful metadata. Besides the data array, PyPulse will

unpack and store all extra information for retrieval via get() methods as desired.

The basic operation to reduce the size of the data array of intensities is known

as “scrunching”, which involves averaging over a specific window size over the array

dimension. Averaging is possible in any of the four dimensions, invoked with the

methods:

tscrunch ()− time (subintegration) averaging

pscrunch ()− polarization (channel) averaging

fscrunch ()− frequency (channel) averaging

bscrunch ()− phase (bin) averaging

Arguments can be provided to specify the window size or factor by which to reduce

array dimension’s size. All averaging actions can be undone by using the reset()

method, which will replace the data array with a stored copy of the data if the

lowmem flag is set to True (by default), or will reload the data from disk if False.

Pulse polarization information can be stored in a variety of states. The most

common storage states are the coherence matrix (Coherence parameters) or Stokes
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parameters. Given an electromagnetic wave’s polarization represented by a Jones

vector with orthogonal elements P and Q, the coherency matrix is defined as



PP ∗ PQ∗

QP ∗ QQ∗


 (A.2)

The four Coherence parameters are internally stored as (PP ∗, QQ∗,Re[PQ∗], Im[PQ∗]).

Assuming linear polarization, the Coherence parameters are related to the Stokes

parameters as

I = PP ∗ +QQ∗

Q = PP ∗ −QQ∗

U = 2Re[PQ∗]

V = 2Im[PQ∗] (A.3)

By default, array data are polarization averaged as well as de-dispersed, in

which a time delay is applied proportional to the dispersion measure (DM) in the

PSRFITS header. This default array preparation can be turned off by supplying

the prepare=False argument when creating the Archive constructor. Array data

can be retrieved by getData(), which returns a numpy array with dimensions of

length 1 removed. The saveData() method will write the primary data array I to

either a numpy .npy file or an ASCII text file if specified.

Archive will create simple data products from the primary data array. The

getAxis() method will calculate and return either the time or frequency axes de-

pending on the argument supplied. All of the pulses in the data array (at its

current state) can be wrapped in the SinglePulse class (see the next section) via

the getSinglePulses() method, which allows bulk pulse properties to be applied

to each single pulse. The helper method fitPulses() will return a requested subset
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of the quantities of SinglePulses fitPulse() method (again, see the next section),

rather than obtaining the SinglePulses and then running fitPulse() on each indi-

vidually. A dynamic spectrum can be generated via getDynamicSpectrum(), which

uses either the peak data intensity, or the best-fit intensity if a template waveform

is supplied, as a function of time and frequency.

If the data have been averaged into a single dimension, typically such as phase,

then plot() will display the pulse profile. imshow() produces a 2D plot in the

style of matplotlib’s imshow when the data have been averaged into two dimen-

sions. pavplot() is a modification of imshow() that produces a 2D plot similar to

PSRCHIVE’s pav command, with either the -GTpd or -YFpd flags, depending on

which dimensions are averaged over. waterfall() will produce a 2D series of line

plots for easier pulse visibility. The joyDivision() method is a modification that

produces a waterfall plot in the style of the famous album cover showing pulses

from PSR B1919+21 (originally CP 1919, in Craft 1970).

The time() method will calculate pulse times of arrival (TOAs) given a tem-

plate waveform. The TOAs returned will be phase values converted into time units

(relative TOAs). However, if MJD=True, then true TOAs will be calculated with

the appropriate time tags and delays computed (absolute TOAs).

A.2 SinglePulse

The SinglePulse class wraps a 1D data array containing pulse intensities as a

function of phase. It stores the location of the main and off pulse (and interpulse,

if provided) phase ranges of the profile, and can calculate one given the other. If no

ranges are provided, it calculates the off pulse window given the method described
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Figure A.1: Example of PyPulse’s imshow() with data taken from the Green Bank
Telescope for the 24-hour global campaign on PSR J1713+0747. This figure is
identical to the top right panel of Figure 1.2. The code to produce this plot is
provided in §A.5.

in Chapter 5, §3.1.

There are numerous operations that can be performed on the pulse, changing

its saved state. The pulse can be rotated in phase by computing the Fourier trans-

form of the profile, utilizing the shift theorem, and then computing the inverse

Fourier transform of the final waveform. Note that rotating the pulse does not

change the location of the three phase windows described above, which allows the

pulse to be rotated into a pre-defined position without that position changing.

Calling remove_baseline() will subtract the mean value from the off-pulse base-

line. Normalizing the pulse to unit amplitude or area is accomplished with the
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normalize() method.

The effective width (Weff) and full width at half maximum (FWHM) of a pulse

can be calculated easily though it is recommended to do so only on noiseless data

(i.e., a pulse template). The autocorrelation function (ACF) can also be calculated

for each pulse window individually. One important aspect of proper calculation of

an ACF is the removal of the baseline intensity level. Any constant offset added to

a function will introduce a triangle function into an ACF and therefore the baseline

must be removed for a proper width to be estimated.

The primary template matching algorithm of Taylor (1992) is performed

through fitPulse(). The function takes a template waveform to fit to the stored

data profile. It returns several quantities, including the estimated TOA with error,

the scale factor with error, the pulse S/N, and the correlation coefficient ρ. See

Chapter 5, Eq. 1.3 for the appropriate signal model. Normalizing the template

waveform to unit amplitude is important for proper estimation of the scale factor

and pulse S/N.

A.3 DynamicSpectrum

The DynamicSpectrum class is primarily a storage object for 2D dynamic spectra

arrays. In addition to the data array of pulse intensities I(ν, t), it can store the

off-pulse dynamic spectrum, the errors on the estimated intensities, and a mask

array, all of the same shape as the data array. It will also keep track of the two

data axes in time and frequency.

The dynamic spectrum is used to calculate several data products which
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can be done with the DynamicSpectrum class. The 2D ACF R(∆ν,∆t) =

〈I(ν, t)I(ν + ∆ν, t+ ∆t)〉 is useful for estimating scintillation timescales ∆td

and bandwidths ∆νd. It is computed with acf2d(), which uses a Fast Fourier

Transform-based (FFT) convolution (scipy’s fftconvolve). Similarly, we can com-

pute the secondary spectrum (with secondary_spectrum()), S(fν , ft) = |Ã(ν, t)|2,

which is useful for investigating scattering structure along the line of sight to a

pulsar.

As with the 1D pulse ACF, the baseline intensity must be subtracted from

the dynamic spectrum in order to properly calculate the scintillation parameters

∆νd and ∆td from the widths of the central feature. We perform baseline removal

by creating a histogram of the intensities and fitting either a Gaussian function

or a more appropriate diffractive scintillation “gain” PDF (see Eq. 5.7) to the

histogram and subtracting the intensity value that corresponds to the peak of the

histogram. The scintillation parameters can then be estimated by fitting a 2D

Gaussian function over the central ACF peak. The half width at half maximum in

the frequency dimension is taken for ∆νd while the half width at 1/e is taken for

∆td (Cordes 2002). The rotation of the 2D Gaussian dν/dt is related to refraction

and symmetries of the scattered pulsar image (Cordes et al. 1986).

DynamicSpectrum allows other dynamic spectra to be added to the stored

array with the add() method. In addition, DynamicSpectrum allows for the data

arrays to be saved to (via save()) and loaded from (via load()) a .npz (a numpy

dictionary) file, such that any processing is retained in memory.
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A.4 Other Utilities

PyPulse comes with a number of other classes and functions for use. The utils.py

file contains generic mathematical and time series analysis routines. The func-

tionfit.py file contains fitting routines for a number of functions used throughout

PyPulse. The par.py file contains the Par class, useful for text manipulation of

pulsar parameter (par) files. Similarly, the tim.py file contains the Tim class, which

allows for quick text manipulation of pulsar TOA (tim) files.
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A.5 Sample Code

Below is the code to produce Figure A.1.

# Import statements

import numpy as np

from matplotlib.pyplot import *

from matplotlib import rc ,cm

from pypulse.archive import Archive

# Set LaTeX font

rc(’text’,usetex=True)

rc(’font’ ,**{’family ’:’serif’,’serif’:[’Times New Roman’]})

rc(’xtick’ ,**{’labelsize ’:16})

rc(’ytick’ ,**{’labelsize ’:16})

rc(’axes’ ,**{’labelsize ’:18})

# Load archive

ar = Archive("GUPPI_J1713 +0747 _56466_10724_all.pzap")

ar.tscrunch ()

F = ar.getAxis(’F’)

ar.imshow(cmap=cm.binary ,show=False ,

extent =[0,1,F[0],F[-1]+(F[-1]-F[ -2])])

# Label plots

xlabel("Pulse Phase")

ylabel("Radio Frequency (MHz)")

show()
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APPENDIX B

QUICKLOOK

Quicklook (https://github.com/mtlam/Quicklook/) is a pure Python pro-

gram that allows for the rapid creation and viewing of pulsar data products. It

uses the PyPulse package (Appendix A) for data access and processing. The main

goals of Quicklook are to: (i) verify data quality, (ii) identify interesting features

and variations in data products, and (iii) increase data accessibility. As with Py-

Pulse, Quicklook is object oriented in design.

B.1 ArchiveHandler

The ArchiveHandler class builds upon PyPulse’s Archive class (see Appendix A.1).

It takes a filename and either creates an Archive in memory or loads data from a

.npz (numpy dictionary) file. If it creates an Archive, then it will automatically

create various data products from the pulse profiles (by calling internal get()

methods) and store them internally. In addition, ArchiveHandler will store relevant

metadata (e.g., axis information) from the PSRFITS file for plotting.

ArchiveHandler also produces the individual panel plots for each of the data

products by calling internal plot() methods. Each plotting method can either

draw a new matplotlib figure or can take an axis and draw to it directly, allowing

for flexibility in where plot output is sent. All data products can be saved as a

.npz file with the save() method to prevent future re-calculation.
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B.2 Quicklook

The graphical interface is created within the Quicklook class. It contains a default

set of axis objects drawn in specific positions on the figure. Future iterations of

Quicklook will allow for increased flexibility in what is plotted and where. The

Quicklook class contains a single ArchiveHandler object, which creates all of the

data products and associated plots as described above. Quicklook simply pro-

vides the appropriate axis object to the corresponding ArchiveHandler method

to retrieve the plots. In addition to the graphics management, all command-line

argument parsing is handled within the quicklook.py file.

Figure B.1 shows a sample output plot using data taken from the Green Bank

Telescope for the 24-hour global campaign on PSR J1713+0747. Useful header

metadata information is provided at the top while the different panels show the

various data products. See the figure caption for more details. The figure was

produced by the following command:

$ ./quicklook.py -ext pdf -template J1713+0747.Rcvr1 2.GUPPI.9y.x.sum.sm

GUPPI J1713+0747 56466 10724 all.p.zap

Below we will describe the different panels as shown. The calculations are

performed by PyPulse, and so explicit equations are provided in Appendix A.

B.2.1 Header

At the top, the text provides useful information from the PSRFITS file and obser-

vation, including the filename, telescope, MJD of the observation, pulsar observed,
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Figure B.1: Output from Quicklook with data taken from the Green Bank Tele-
scope for the 24-hour global campaign on PSR J1713+0747. The two small panels
in the top left show the average pulse profile and the pulse template (filename
supplied as a command-line argument). Below are the pulse profiles and difference
profiles (data − template) as a function of frequency. In the middle is the dynamic
spectrum. The 2D autocorrelation function is shown at top right and below that
is the secondary spectrum (see Appendix A for more information). Both plots
are symmetric about the origin, a feature of the two data products. At bottom
right, we show two diagnostic panels, the pulse S/N as a function of DM (left,
DM in the PSRFITS header is shown by the vertical line) and the histogram of
pulse amplitudes from the dynamic spectrum (right). Basic metadata about the
observation are provided by the text at top.

pulsar period, number of phase bins, header dispersion measure (DM), best calcu-

lated dispersion measure, total observing bandwidth, number of frequency chan-

nels, observation duration, and amount of time per phase bin.
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B.2.2 Average Profile

In the top left is the average profile, I(φ) = 〈I(ν, p, t, φ)〉ν,p,t. The calculated

off-pulse region is shown in red.

B.2.3 Template

If a template U(φ) is provided, then we show the template shape with the calculated

off-pulse region is shown in red. Otherwise, the panel is blank with the text

displaying “NONE”.

B.2.4 Intensity Profiles

In the lower left are the data profiles averaged in polarization and time, I(ν, φ) =

〈I(ν, p, t, φ)〉p,t.

B.2.5 Difference Profiles

To the right of the intensity profiles, we show the difference profiles

〈I(ν, p, t, φ)〉p,t − U(φ) as a function of frequency. If no template is provided,

then the average profile is used as a template.
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B.2.6 Dynamic Spectrum

The center panel shows the dynamic spectrum I(ν, t). If a template is provided,

then the template is fit to the data profile and the dynamic spectrum represents

the best-fit pulse amplitudes. Otherwise, the dynamic spectrum is calculated from

the intensity profiles as I(ν, t) = 〈I(ν, p, t, φ)〉p,φ. At present, no color scaling has

been implemented.

B.2.7 2D Autocorrelation Function

The top right panel shows the 2D autocorrelation function, computed from the

dynamic spectrum as R(∆ν,∆t) = 〈I(ν, t)I(ν + ∆ν, t+ ∆t)〉. The full range of

lags is shown.

B.2.8 Secondary Spectrum

Below the 2D autocorrelation function, the secondary spectrum S(fν , ft) =

|Ã(ν, t)|2 is shown. The full range in conjugate time and frequency is shown.

B.2.9 Dispersion Measure Estimate

Of the two bottom-right panels, the left shows the average pulse signal-to-noise

(S/N) versus trial DM used to de-disperse the pulse. Note that frequency-

dependent profile evolution is not accounted for here. The header DM is shown

with the vertical line.
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B.2.10 Pulse Amplitude Distribution

In the very bottom right, we show the amplitude distribution of our pulses

I(ν, t, φ). This is simply a histogram of the amplitude values in the dynamic

spectrum.
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